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ABSTRACT

The work covered under this Contract included two numerical efforts and one companion

experimental effort.

One of the numerical efforts generated a procedure to analyze the boundary layer on

airfoils experiencing unsteady flight conditions and to predict the changes in the performance

characteristics during off-design. The method predicts the flow in the boundary-layer region

near the separation bubble using the incompressible Navier-Stokes equations with boundary

conditions from inviscid and laminar boundary-layer solutions. The rate at which the separation

bubble develops and decays is of primary interest in this study. Unsteady surface-pressure-

coefficient distributions and velocity profiles are presented.> The work includes application of

this techniq r to two state-of-the art airfoils, the ASM-LRN-010 (Pfenninger et al. 1988

"Design of Low Reynolds Number Airfoils-i1" AIAA-88-3766) and Wortmann FX63-137

airfoil sections with chord Reynolds numbers of 250,000 and 500,000 and operating under light

dynamic-stall conditions (Reed & Toppel 1990 "Low Reynolds Number Airfoils Under Gusting

Conditions" in preparation).
1k

The second numerical effort and the experimental effort involved the study of three-

dimensional unsteady separation under low-Reynolds-number conditions. The test geometry

consisted of a channel with a suction patch on the opposite wall. Contributions from the

numerical effort include a novel, robust adaptive-grid technique for incompressible flow (Shen

& Reed 1990a "Shepard's Interpolation for Solution-Adaptive Methods" submitted to Journal

of Computational Physics; Shen & Reed 1990b "Solution-Adaptive Methods for

Incompressible Navier-Stokes Equations" in preparation) as well as insight into the temporal

development of unsteady separation (Shen & Reed 1990c "Three-Dimensional Separation at

Low Reynolds Numbers" in preparation). Additional contributions from the experiments

include a database for comparison with theory and computations. (Henk, Reynolds, & Reed 1990

"Unsteady, Three-Dimensional Separation Experiments" in preparation).
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1. INTRODUCTION

In this Final Report, Part 2 contains a list of related experience and accomplishments.

Part 3 presents results from completed experimental work (Stanford University - W.C. Reynolds

and H.L. Reed), Part 4 from completed unsteady 2-D computational work (Arizona State

University - H.L. Reed), and Part 5 from completed unsteady 3-D computational work (Arizona

State University - H.L. Reed).

2. RELATED EXPERIENCE AND TECHNICAL ACCOMPLISHMENTS

In the past, 3 students were supervised, 11 publications were written, and 6 talks and

lectures were given.

Publications

1. "Shepard's Interpolation for Solution-Adaptive Methods," C.-Y. Shen and H.L. Reed,
submitted to Journal of Computational Physics, 1990.

2. "Solution-Adaptive Methods for Incompressible Navier-Stokes Equations," C.-Y. Shen
and H.L. Reed, in preparation, 1990.

3. "Three-Dimensional Separation at Low Reynolds Numbers," C.-Y. Shen and H.L.
Reed, in preparation, 1990.

4. "Low Reynolds Number Airfoils Under Gusting Conditions," H.L. Reed and B.A.
Toppel, in preparation, 1990.

5. "Unsteady, Three-Dimensional Separation Experiments," R.W. Henk, W.C. Reynolds,
and H.L. Reed, in preparation, 1990.

6. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, Low Reynolds Namber
Aerodynamics Conference, Notre Dame, June 5-7, 1989; in Lecture Notes in
Engineering, Springer-Verlag, New York, to be published.

7. "Experiments on an Unsteady, Three-Dimensional Separation," R.W. Henk, W.C.
Reynolds, and H.L. Reed, in Proceedings of the Second AFOSR Workshop on Unsteady
Separated Flows, USAF, CO, July 28-29, 1987.

8. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, ASME Forum on
Unsteady Separation, Cincinnati, June 1987.

9. "Fluids Engineering Workshop Unsteady-Flow Subgroup Final Report," H.L. Reed et
al. (Prepared and edited: H.L. Reed), NSF Workshop, Savannah (Sept. 1986), Dec.
1986.

10. "An Analysis of Unsteady, Two-Dimensional Separation Bubbles," H.L. Reed and L.K.
Pauley, in Proceedings of the Royal Aeronautical Society Conference on Aerodynamics
at Low Reynolds Numbers, London UK, Oct. 15-18, 1986.
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11. "Report of Computational Group," H.L. Reed, in Transition in Turbines, NASA CP
2386, NASA Lewis Research Center, May 1984.

Presentations

1. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, Low Reynolds Number
Aerodynamics Conference, Notre Dame, June 5-7, 1989; in Lecture Notes in
Engineering, Springer-Verlag, New York, to be published.

2. "Structure of an Unsteady, Three-Dimensional Separation," R. Henk, W. Reynolds, and
H. Reed, Bull. Amer. Phys. Soc., Vol. 32, No. 10, p. 2050, Nov. 1987.

3. "Experiments on an Unsteady, Three-Dimensional Separation," R.W. Henk, W.C.
Reynolds, and H.L. Reed, in Proceedings of the Second AFOSR Workshop on Unsteady
Separated Flows, USAF, CO, July 28-29, 1987.

4. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, ASME Forum on
Unsteady Separation, Cincinnati, June 1987.

5. "The Future of Unsteady-Flow Research," H.L. Reed et al., NSF Workshop on
Engineering Fluid Mechanics-Future Directions in Fluid Mechanics, Winter Annual
Meeting of ASME, Dec. 7-12, 1986, Anaheim.

6. "An Analysis of Unsteady, Two-Dimensional Separation Bubbles," H.L. Reed and L.K.
Pauley, in Proceedings of the Royal Aeronautical Society Conference on Aerodynamics
at Low Reynolds Numbers, London UK, Oct. 15-18, 1986.

Ph-D. Students

R. Henk, "Fundamental Studies of Three-Dimensional Unsteady Separation at Low
Reynolds Numbers," Stanford, completed Spring 1990.

C.Y. Shen, "Numerical Simulation of Three-Dimensional Unsteady Separation at Low

Reynolds Numbers," expected Fall 1990.

MS Students

B. Toppel, "Numerical Simulation of Two-Dimensional Un-zLeady Separation at Low
Reynolds Numbers," expected Fall 1990.

The basic accomplishments that are described in these publications can be outlined as

follows:

1. Consistent definition of unsteady and/or 3-D separation established.

2. Full Navier Stokes, spatial-simulation numerics developed for both 2-D and
3-D.

3. 2-D and 3-D adaptive-grid schemes developed for flat plate for full,
unsteady, incompressible Navier Stokes.

4. 2-D and 3-D unsteady, vortex-lattice code developed to solve inviscid flow
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over an airfoil. This was established for the farfield boundary condition for the
boundary-layer code and the Navier-Stokes simulation.

5. 2-D boundary-layer code developed including leading edge and curvature.
This was established for the upstream boundary condition for the simulation.

6. Established platform for unsteady-separation studies for unswept wings at
50,000-500,000 chord Reynolds nuribers.

7. Companion experiments on unsteady, 3-D, low-Reynolds-number separation
finished at Stanford.
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PART 3. COMPLETED COMPANION EXPERIMENTAL WORK (STANFORD

UNIVERSITY WITH W. C. REYNOLDS)

This section begins with a literature review, then proposes a consistent definition for

separation, and finally describes the experimental results in a water channel at Stanford

University. Because of the time constraints to complete this final report, Part 3 is a draft of the

PhD dissertation of Roy Henk at Stanford, working under the direction of W.C. Reynolds and

H.L. Reed.

This section will ultimately appear as part of the Stanford report; however, it is included

here as well because money was budgeted in the Arizona State University side of the grant for

H.L. Reed to travel at least once a month to Stanford to advise the PhD student Roy Henk.
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Chapter 1

Introduction

1.1 Background

When the boundary layer on a solid surface encounters an adverse pressure

gradient, the shear layer may depart from the surface in what is commonly referred

to as flow separation. In flows of technological nature, e.g. turbomachinery and

airfoils, flow separation (hereafter separation) often has devastating consequences.

Separation inhibits heat transfer, increases the drag of vehicles, stalls turbines, and

causes aircraft to lose lift.

For engineers, flow separation has historically been a problem of peculiar diffi-

culty because conventional boundary-layer calculations break down at the point of

separation. For many years research concentrated on stationary, two-dimensional

separation. This work led to a generally agreed upon model for separation and the

ability to calculate beyond the point of separation.

More recently, interest has shifted to separation in the nonstationary and three-

dimensional flow regimes. Most practical flows in nature and technology are both

three-dimensional and time-varying. The model for stationary, two-dimensional

separation has been found by many researchers to be inadequate for describing

three-dimensional and/or nonstationary separation.

Some advantages can result from a greater understanding of unsteady separa-

tion, for instance dynamic enhancement of lift (Carr, McAlister and McCroskey,

1977). Maxworthy (1981) and Saharon and Luttges (1987) report that those flying

creatures which can hover, e.g. hummingbirds, bees, and other insects, manipulate

unsteady, three-dimensional separation in order to remain aloft and to maneuver.

Some questions that need to be answered are: How long does separation take

to develop? What determines the size or extent of separation? Through what
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stages does the flow structure pass on the way to fully developed separation? How

long does each stage persist? How does separation decay? How does turbulence

come into play in a separation of a laminar boundary layer? And finally, is there

a precise definition for separation in the global nonstationary, three-dimensional

context?

Consequently, there is a need for comprehensive, fundamental examination of

carefully controlled, unsteady, three-dimensional separations. This investigation is

part of a program intended to meet this need.

1.2 Objective and Overview

The objective of the present experimental program at Stanford has been to

characterize the time development and decay pressure-driven, unsteady, three-di-

mensional, laminar separation. In particular, interest focused on the structure and

time-scaling of flow separation.

In order to achieve this objective, an existing water tunnel that was originally

designed for the study of unsteady, two-dimensional boundary layers was modified

to allow imposition of a controlled, time-dependent, three-dimensional, freestream

velocity field on a laminar boundary layer. The facility was largely rebuilt for this

work and special, fast-acting, flow-control valves were developed.

The experiment studied the response of a laminar boundary layer on a flat

plate to the sudden imposition of a local, three-dimensional deceleration in the

freestream flow, which resulted in a pressure-driven separation of the boundary

layer. The developing flow structure was studied with a combination of visual and

quantitative measurements. The relaxation to a zero pressure-gradient boundary

layer upon sudden return to a uniform freestream velocity was also investigated.

The separation structure that was generated in this investigation is similar to

flow separations that have been identified in a variety of situations; Bippes (1987)

gives several examples. Though the global geometries of these situations may

2
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differ, the local features of separation are the same. Hence, flow separation can be

thought of as a "module" within a larger flowfield which can be isolated for study.

The most important observation in this investigation was that the three-dimen-

sional separation contains an unstable free-shear layer which sheds vortices much

like a conventional, two-dimensional mixing layer. The Strouhal number of the

shedding frequency f was found to be

St -0

U0

where UO is the upstream velocity and 00 is the momentum thickness of the ap-

proaching boundary layer. The Strouhal number was independent of the strength

of the adverse freestream-velocity gradient.

The companion numerical simulation of Pauley, et al. (1988) provides extensive

detail of the flow filed, pressure, and vorticity for one of the test cases reported

herein. The experiment complements the simulation primarily by providing a

relatively rapid scan of the separation structure over a wide parameter space.

Together, these studies have enhanced understanding of nonstationary, three-di-

mensional separation. Insights from these programs should assist the modeling of

these complex flowfields which are observed throughout nature and technology.

3
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Chapter 2

Background and Literature

2.1 Overview and some definitions

This chapter will review literature pertinent to unsteady and three-dimensional

separation. Highlights of new analytical tools and theories that have already been

developed for this field will be discussed.

It is important to note that the very definition of separation has been under

dispute. Consequently, terminology used among researchers has often become

confused. Differing definitions, however, can usually be resolved because various

authors have merely emphasized identical phenomena to differing degrees.

For the sake of preciseness, a few frequently used terms will now be defined.

"Stationary" will be used to refer to fixed initial and boundary conditions. "Non-

stationary" will be used for time-variable initial and/or boundary conditions.

"Steady" means that the local flowfield does not vary with time. "Unsteady"

will primarily refer to organized unsteadiness in the flowfield which may arise from

inherent instabilities under stationary conditions or may be a response to nonsta-

tionary conditions. "Quasi-steady" refers to an unsteady flowfield that has lost all

phase coherence. "Fluctuating" is a catchall for random unsteadiness and or other

effects which were not identified as organized unsteadiness. A "saddle point" is a

special point where the wall shear-stress vector field (or equivalently the limiting

streamlines at the wall) has the topology shown in figure 2.1. These and ensuing

definitions are collected in the glossary, appendix A.

The definition of "separation" or "separation region" used here is a flow

structure that consists of a separation line and a separation wake. A "separation

line", also shown in figure 2.1, is the line that passes through a saddle point on

a solid surface. There must be a point, therefore, where Tw = 0 (or Cf = 0) for

4
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separation to exist. In order to distinguish from attachment, flow near the saddle

point moves away from the wall. Sluggish fluid downstream of a separation line

will be called a "separation wake."

There are several attractive features of this definition. The saddle point has

a precise mathematical definition. The reference frame is the surface of the solid

body. The definition is valid for stationary and nonstationary flow. This definition

for separation is strongly akin to the one held by Prandtl.

When Prandtl (1905) first identified flow separation, he described several dif-

ferent phenomena that all occurred at the same point:

For our application, however, the most important consequence of this in-
vestigation is that in certain cases the flow detaches from the wall at a spot
completely determined by the boundary conditions. This fluid layer displaces
itself into the freestream, which is set into rotation through the friction of
the wall causing a complete rearrangement of the motion, and there plays
the same roll as the Helmholtz separation layer 1

Prandtl 2 later refined the definition of separation to

-y 0 (for y= 0) , (2.1)

where he selected the zero shear-stress cond'tion as the key phenomenon.

During the following seven or so decades, most separation research emphasized

stationary, two-dimensional flows. It was repeatedly noted that the vortical shear

layer broke away from the surface and that reversed flow began at the separa-

tion point. Furthermore, the boundary-layer equations, so useful for engineering

calculations and design, became singular at this point. Unfo-tunately, the zero

shear-stress definition of separation became encumbered with the associated phe-

nomena of shear-layer breakaway, reversed flow, and computational instability.

1 "Das ffir die Anwendung wichtigste Ergebnis dieser Untersuchungen is. aber das, daB sich

in bestimmten Fillen an einer durch die iuBeren Bedingungen vollstindig gegeben Stelle der
FMissigkeitssirom von der Wand Abl6st. Es scheibt sich also eine Fliissigkeitsschicht, die durch
die Reibung an der Wand in Rotation versetzt ist, in the freie Fliissigkeit hinaus und spielt
dort, eine v6llige Umgestaltung der Bewegung bewirkend, dieselbe Rolle wie die Helmholtzchen
Trennungsschichten." (English translation by R. W. Henk and P. J.-D. Juvet)

2 Literature regarding flow separation universally attributes this definition to Prandtl. For

example, see Prandtl and Tietjens (1934) pp. 63f.

5
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Accordingly, a concept of separation from stationary, two-dimensional flow that

encompassed all these phenomena became the norm.

The concept for stationary, two-dimensional separation was found inadequate to

address all the phenomena when either three-dimensionality or unsteadiness was

added. For these cases, the phenomena of (1) zero shear stress on the surface,

(2) reversed flow, and (3) shear-layer breakaway, may occur independently or not

at all. Consequently, a variety of definitions have been proposed to make up

for the deficiencies in the concept of a stationary, two-dimensional separation.

A dispute over various definitions has arisen and has not been fully resolved to

date. The controversy can be avoided altogether by dealing with each phenomena

individually. Returning to the fundamentals, the working definition above is found

consistent for all cases of stationary and nonstationary, two- and three-dimensional

laminar flows. Simpson (1989) defines turbulent detachment similarly. We have

come full circle.

Since the field of nonstationary, three-dimensional separation is fairly new, most

of the literature reviewed has been assembled by isolating the two adjectives, "non-

stationary" and "three-dimensional." So, after briefly touching on stationary, two-

dimensional separation, this chapter will move on to nonstationary, 2-D separation,

and conclude with stationary and nonstationary, three-dimensional separation.

A review of the literature indicates that...

* Three-dimensionali ty arises in two-dimensional separations;

" Unsteadiness is inextricably intertwined with three-dimensional flow;

" Organized unsteadiness is observed in practically all separated flows, even in

"stationary" two-dimensional cases. Marginal separation at low adverse pressure

gradients may be truly steady;

* Inherent unsteadiness and three-dimensionality requires careful interpretation

of visualized flows;

6
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* Topology has been a valuable mathematical tool for classifying stationary three-

dimensional flows and distinguishing flow zones. It has also proved useful for

ensuring accurate reconstruction of flow phenomena from flow visualization;

" Global flow conditions in wind/water tunnels such as blockage and wall con-

straints greatly affect separation studies and should be considered in design;

" Momentum thickness of the boundary layer, up to separation, is one of the most

important flow parameters; For the remainder of this chapter, we will look at

each related field in more depth.

2.2 Stationary, Two-dimensional Separation

The study of stationary, two-dimensional separation has provided a healthy da-

tabase and well-established model, figure 2.2. Reviews and compendia of station-

ary, two-dimensional separation abound (e.g. Williams, 1977 and Simpson, 1989).

Williams dealt primarily with laminar separation and reviewed computational tech-

niques that which bypass the singularity of the boundary-layer equations, thereby

permitting calculations into the separated zone. These techniques are valid only

for "small" separation zones, i.e. zones of a size of the boundary-layer thickness.

Simpson dealt primarily with turbulent separation under stationary and nonsta-

tionary conditions.

Kline (1959) reviewed and significantly extended the then current understand-

ing of "stall", that is "any backflow at a wall whether small of large, transient or

steady." He focused primarily on internal flows, i.e. diffusers, and through the

results of flow visualization was able to distinguish "four major types of stall flow

patterns", each of which included steady and unsteady elements. He also formu-

lated a qualitative parameter which enabled engineers to interpret and predict the

qualitative behavior of stall. He indicated that the presence of the extra wall in

internal flows resulted in a larger diversity of stall patterns than were observed for

external flows.

7
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Sandborn and Kline (1961) later introduced flow models for the inception of

boundary-layer stall that correlated the data better and increased understanding

of internal and external stall. The) proposed a useful set of definitions on the

detachment state near the wall. These definitions are based on fraction of time

that the flow moves downstream. Such distinctions are important for turbulent

separation because under adverse pressure gradients the layer of fluid nearest the

wall contains locally reversed flow long before detachment. "Detachment" was

defined as the point where the time-averaged, wall shear stress, Tw, equals zero.

Kline, Bardina, and Strawn (1983) later developed a single-variable correlation for

detachment of laminar and turbulent boundary layers.

Gaster (1966) noted two types of stationary, two-dimensional separation for

external flows. He gathered results from several investigations of stationary, two-

dimensional separation and added his own to develop a criterion for which a "long"

bubble "bursts" into a "short" bubble. What differentiated a long bubble from a

short bubble is that a short-bubble separation reattached to the surface whereas

a long bubble formed a large wake. Another distinguishing feature between long

and short bubbles was the comparative impact on an airfoil's pressure distribution.

Long bubbles accompanied airfoil stall and loss of lift. A short bubble, however,

had little effect on the overall pressure distribution; its sole consequence often was

to act as a fluidic trip to turbulence.

Gaster's observations were based on the velocities measured with a hotwire.

For example, he noticed that when the hotwire was positioned in the recovery

portion of the separation, unsteadiness appeared in oscilloscope traces. Traces in

the recovery region of short bubbles exhibited "low-frequency character" of "high

harmonic content," that is quasi-sinusoidal behavior. Gaster attributed this to "the

growth of instability waves in the attached boundary layer," but does not identify

the i;-stability. Long bubbles traces showed steady behavior with intermittent

turbulence.

Gaster also identified the momentum thickness as a primary parameter for re-

search in flow separation. The momentum thickness varies slowly as the boundary

8
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layer separates. For the "bursting" criterion, Caster found a unique relationship

between the momentum-thickness Reynolds number, Re0 , and a non-dimension-

alized pressure gradient formed from the results of potential flow analysis and the

experimentally determined momentum thickness, 0, at the point of separation.

Pauley, Moin, and Reynolds (1988, 1990) add, through direct numerical sim-

ulation, considerable new insight into the physics which dissociate Caster's long

bubbles from short bubbles. Long bubbles were confirmed to be steady. They

found, however, that the mechanism that shortens the separation bubble is an os-

cillatory roll-up and shedding of spanwise vorticity from the detached shear layer.

They then refined Caster's criterion and compared their results with his to show

that the onset of shedding, i.e. the "bursting" of a long bubble to a short one,

occurs at
Pmz= -~--- 1 / 0,= -. 24

V dx /max

In addition, they made the following conclusions:

o The application of stationary, inlet, boundary conditions with strong adverse-

pressure gradient produced a separation with periodic shedding.

o The propagation velocity of the shed spanwise vortex was approximately 60%

of the local freestream velocity, UoO, downstream of separation.

o Spanwise vortices shed at a constant frequency which was independent of the

pressure gradient applied. For all cases, the characteristic Strouhal number

was

St_ f . =sep = 0.00686 ± 0.6%
Usep

which is consistent with the results of linear stability theory.

Winkelmann and Barlow (1981) found that stationary, "two-dimensional" sep-

arations on airfoils set at an angle of attack were truly three-dimensional. They

found this true independent of the airfoil's aspect ratio. Vis-lalization of the sep-

arated flow used the surface oil-film technique. They looked at both leading-edge

and trailing-edge separation bubbles. The "two-dimensional" leading-edge separa-

tion exhibited small three-dimensional eddies. The trailing-edge separation bubble

9
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was found to be a single three-dimensional structure for low-aspect-ratio airfoils

and multiples of the same structure for high-aspect ratio airfoils. Hot-wire mea-

surements in the wake of the airfoil agreed with their characterizations of the

trailing-edge separation bubble.

Kiya and Sasaki (1983) thoroughly documented the velocity and press re sig-

natures of a stationary turbulent separation bubble. They observed that coherent

"large-scale vortices shed downstream from the separation bubble at a character-

istic frequency of .6Uoo/xR, where ZR is the time-mean length of the separation

bubble." The factor 0.6Uoo is suggestive of the convection velocity of structures.

They found even larger-scale unsteadiness at a frequency of 0.2 Uoo/xR. Two-point

correlations and autocorrelations enabled the size and convection speeds of shed

vortices to be quantified.

Liebeck and Blackwelder (1987) report on the performance of a LA2573A airfoil

operating at a low Reynolds number and document the separation bubble at an

angle of attack, c = 8" and Rec = 0.23 x 106. A peak frequency in the detached

shear layer occurred at 3.7kHz. For the sake of comparison with the results of this

experiment, a few approximations will be made. Given that the chord length is

0.15m, the freestream velocity can be estimated to be Uw _ 23m/s. From a plot,

the boundary layer upstream of the separation appears to have 699 - 0.6mm. Now

the Strouhal number can be estimated

St f 99 0.01

This value compares well with the results of the present investigation.

This section has shown that many two-dimensional separations are unsteady,

even under stationary conditions. A model for steady, two-dimensional separation

arose from taking a time-averaged perspedive of unsteady phenomena subjected

to stationary boundary conditions. The next section will report on research where

a two-dimensional boundary layer is separating under nonstationary boundary

conditions, which is often confusingly classified as "unsteady separation."

10
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2.3 Nonstationary, Two-Dimensional Separation

Dynamic stall of pitching helicopter blades and of turbomachinery has been

a large motivating force behind investigations of nonstationary, two-dimensional

separation. Stall has been approached from two perspectives: (1) from the labo-

ratory perspective as an oscillating airfoil in a uniform freestream, and (2) from

the vehicle's perspective as a nonstationary freestream over the body. This section

concentrates on literature from the second perspective-theoretical and experi-

mental, respectively-with a brief digression with regards to the debate that has

arisen over the definition of nonstationary separation.

Watson (1958) and Stuart (1955) performed some early theoretical work on

boundary-layer responses to a time-varying freestream. The work is an extension

of Stokes first and second problems of a nonstationary plate. Watson, for instance,

found phase-leads and lags in the boundary layer that have been verified experi-

mentally, e.g. Brereton and Reynolds (19S7). The works by Watson and Stuart,

however, did not specifically cover nonstationary, separated flows.

As mentioned above, there is little agreement over the definition of separation

when it is growing or traveling. It has been documented by many sources that

the point of zero shear stress does not coincide with the location of boundary-

layer breakaway during nonstationary conditions. Reviews by Sears (1956) and

Riley (1975) approached the nonstationary separation problem from a theoretical

framework and drew opposing conclusions. Sears has found more supporters for

his side. The present focus of attention in this dispute is the MRS definition of

separation, which will be elaborated on shortly.

This dispute can be resolved by recognizing the importance of each phenomenon

through simple, precise definitions. The debate is simply over semantics and could

have been avoided altogether by dropping the term "separation" and by dealing

individually with the phenomena: zero shear stress, reversed flow, and shear-layer

breakaway. Our working definition for separation does not negate the validity of

any research based on other definitions.

11



Roy W. Henk 7/16/90 9:14am

The list below describes each phenomenon individually:

" "Zero shear stress" occurs on a surface when the gradient of tangential velocities,

u and w, normal to the surface simultaneously equal zero, that is au/8y =

awlay = 0. This is also denoted Tw = 0. In this chapter, "zero shear stress" is

typically equated with a "saddle point".

" "Reversed flow" occurs when a velocity vector has a component opposite to the

freestream direction.

" "Breakaway" occurs when the transport of vorticity away from the wall shifts

from a diffusion process to convection. This phenomena corresponds to large

v-velocities which invalidate the boundary-layer equations. For the sake of con-

sistency, articles reviewed below will adopt the above terminology instead of the

respective author's except when quoting directly or when the context-is clear.

The MRS Condition. Moore (1957), Rott (1956), and Sears (1956) independently

contended that the zero shear-stress criterion was inadequate for identifying separa-

tion and that breakaway equals separation. For example, Moore predicted reversed

flow without displacement of the outer freestream flow. Sears stated

... that "separation" is presumed to mean the breaking away of the bound-
ary layer from the surface, invalidating the boundary-layer approximations,
and that (by analogy with the stationary case) this will be caused by wake
fluid thrusting itself under the boundary layer and deflecting it away. Thus
the appearance of a dividing streamline (trajectory) between wake fluid and
boundary-layer fluid would be a necessary feature of separation, and this
surely can have meaning only when viewed from the moving frame of ref-
erence. Certainly the local, instantaneous vanishing wall shear has no such
significance.

Thus the MRS condition was proposed as an improved mathematical definition for

separation (breakaway), namely that

u = 0, 9ulay = 0 (2.2)

at some point within the boundary layer in a reference frame moving with the

separation. The unsteady separation can travel upstream or downstream, as shown

in figure 2.3.
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The MRS condition abandoned a wall-fixed reference frame. Two conceptual

problems resulted. The first was that u = 0 criterion is defined for a reference frame

translating with the separation, usually at some nonzero velocity with respect to

the surface. In other words, since the MRS separation velocity was not known 6

priori, the definition appeared circular and arbitrary. The second was that since

a surface was not required, the flow could conceivably separate from nothing.

Riley (1975) discouraged unqualified acceptance of the MRS definition "which

is based on the conviction that the boundary-layer equations become singular in

all cases of separation." He supported his argument with cases which contradict

this conviction.

The analysis by Van Dommelen and Shen (1982) resolved the first conceptual

problem (arbitrariness) of the MRS condition by adopting a Lagrangian viewpoint

for unsteady separation. Having focused on the ejection of vortical boundary-

layer fluid into the irrotational freestream, they found that the location of this

phenomenon coincided with the MRS definition.

Having adopted a different phenomenon for the definition of separation, the

working definition clashes with the MRS condition on several points. Consider the

"upstream-moving" and "downstream-moving separations", according to the MRS

perspective, shown in figure 2.3. The first disagreement concerns the location of the

separation for the upstream-moving case. Whereas the working definition identifies

separation at the saddle point on the surface, the MRS condition puts the "sep-

aration point" somewhere out in the flow at "breakaway." Secondly, the working

definition refuses to denote a downstream-moving MRS separation as "separation"

because there is no point of zero shear stress on the wall.

In summary, the MRS condition focuses on the phenomenon of ejection of the

vortical boundary layer into the outer freestream, which has been labeled "break-

away." .ts primary contribution has been to define a velocity for a traveling sepa-

ration. The MRS condition recently gained a firm mathematical basis but remains

almost impossible to identify in practice. Nevertheless, the MRS condition is
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presently the most popular definition among investigators of nonstationary sepa-

ration. Their choice of the ejection phenomena is important to separation research.

How experimentahsts have approached the MRS condition will be discussed in the

next section.

2.3.1 Experiments on Nonstationary Separation Most

experiments regarding nonstationary two-dimensional separation rely entirely on

flow visualization. The reviews by McCroskey (1977) and Telionis (1979) cover

scant quantitative experimental results. In addition to reviewing the literature on

forced nonstationary separation, Reynolds and Carr (1985) introduce the discrete

vortex model and a simple control-volume analysis. The agreement that they find

with experiment is remarkable for such a simple model.

Smith and Kline (1971) visualize and quantify some of the unsteady aspects of

the transitory stall regime of two-dimensional diffusers. Although they visually

observed the flow patterns that correspond to both upstream- and downstream-

moving "MRS separations" during the development and "wash-out" of transitory

stall, they did not quantify the velocity at which the separation moved.

Flow visualization about an oscillating airfoil by Carr, et al. (1977) clearly dif-

ferentiated between reversed flow and shear-layer breakaway. As the airfoil began

to pitch up, flow along the top surface reversed but the streamlines remained par-

allel to the surface, appearing attached. Shortly thereafter, still during pitch-up,

the boundary-layer vorticity lifted from the surface generating a dynamic-stall vor-

tex at the leading edge. The dynamic-stall vortex would shed and be replaced by

smaller vortices which passed through in the wake on the lifting surface. As the

airfoil pitched down, the stalled wake was released.

Koromilas and Telionis (19S0) studied nonstationary separation by subjecting

the flow in a water channel to an impulsive, adverse pressure gradient. They

applied three methods of forcing unsteadiness: by changing the mean flow, by a

flap on the test surface, and by deforming the test surface. In each case they

reported both upstream- and downstream-moving MRS separations.
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Many problems must be addressed thoroughly in assessing the results of this

experiment. Their nonstationary velocity profiles are generated from flow-visuali-

zation pictures. All three cases the initial conditions of the boundary layer and the

inlet flow were nonstationary, the first case intentionally so, but also the second and

third cases because tunnel blockage changed with the forcing. They had difficulty

identifying the downstream-moving MRS separations they had reported and could

not quantify them. This is due to their dependence on quantifying velocities from

flow visualization by hand before the advent of digital particle-tracking velocimetry.

They reported that the developing separation experienced large-scale unsteadi-

ness. This occurred at a time approximately Lr/Uo, where L, is the distance from

the leading edge. Due to the blockage problem mentioned above, an alternative

explanation can be offered for the onset of unsteadiness in the separation that had

already developed.

The alternative explanation follows. The sudden change in inlet velocity, whe-

ther by intent (case 1) or by blockage (cases 2 and 3) causes an impulse vortex

to form at the leading edge. This impulse vortex convects downstream with the

freestream. Consequently, the vortex would be expected to arrive at one unit of

convective time, i.e. at time LI U0 . This point was overlooked in their analy-

sis. The present experiment required specific measures in order to avoid the same

problem.

Their conclusions include the following:

o An upstream-moving MRS separation is preceded by a thin layer of reversed

flow. A shear-stress sensor would therefore be incapable of properly identi-

fying an nonstationary separation.

o For mild pressure gradients, the point of zero shear stress and the MRS

separation region can be easily confused.

o After an impulsive increase of the adverse pressure gradient, the separation

initially erupts to disturb the potential flow up to three times the subsequent

steady-state separation wake. The explosive disturbances evolve into vortical
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wakes before becoming steady-state. This is the probable cause 3 for the

hysteresis and overshoots observed on oscillating airfoils.

o The averaged location of breakaway is not affected by the amplitude of oscil-

lation, but responds to changes in the frequency. Their averaged breakaway

location moved downstream with oscillation.

o It was not possible for them to observe or measure the speed of propagation

of breakaway. Sears (1956), Sears and Telionis (1971), Williams (1977) and

Shen (1978) made predictions which agreed qualitatively but could not be

verified quantitatively. A thin layer of reversed flow precedes a violent wake

region which corresponded to substantial pressure disturbances.

o They could conceive of no means to experimentally predict nonstationary

breakaway.

Didden and Ho (1985) investigated the flow due to a strong vortex traveling close

to a wall. The traveling vortex was created as a vortex ring on an axisymmetrical

jet which then impinged on a flat plate. The traveling vortex induced a moving,

hence unsteady, separation wake by which they were the first to validate a down-

stream-moving MRS separation. they had quantified a nonstationary, separating

flow field more extensively than previous investigations, which had relied more on

flow visualization than measurement probes.

They considered several key velocities in their flow to discover if any satisfies

the MRS condition, since the MRS reference frame is not known 6 priori. They

found the convection velocity of the separation, identified by zero shear stress, to

be 0.4U0 . The convection velocity of peak displacement thickness was also O.4Uo.

The primary vortex moved at 0.61U0, the secondary one at 0.73U0 . Thus they

concluded that the velocity at which the largest displacement thickness traveled

was the "MRS velocity." Note that UO is the exit velocity of the original jet,

so presumably it is also the maximum velocity in the time-averaged boundary

layer after impinging on the plate. They concluded that the nonstationary adverse

3 The alternative explanation offered above primarily contradicts the analysis by Korornilas
and Telionis that lead to this conclusion.
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pressure gradient induced by the primary vortex was the mechanism that led to

unsteady breakaway.

In a theoretical investigation akin to the above experiment by Didden and Ho,

Walker (1978) looked at a boundary layer induced by a traveling vortex. Choosing

a reference moving with the vortex, he observed a recirculation zone at the wall.

The traveling vortex was highly unstable.

Houdeville, Bonnet, and Cousteix (1989) investigated the leading-edge separa-

tion bubble on an oscillating flat plate with a sharp leading edge. They found that

the mean extent of the separation bubble was 30% of the chord. Phase effects were

very important. The flow was dominated by convection effects with a convection

velocity on the order of 0.4Uo, where UO is measured at the tunnel inlet. This held

for integral thicknesses, external velocity and for (u, 2).

Chandrasekhara and Carr (1989) used flow visualization to study dynamic stall

on an oscillating airfoil at various Mach numbers. By differentiating measurements

made from pictures, they noted that the dynamic-stall vortex convected with a

speed 0.3 times the freestream velocity.

Simpson (1989) reviewed turbulent, boundary-layer separation for a large vari-

ety of flow conditions, stationary and nonstationary. He extends the stationary,

separating, turbulent, boundary-layer definitions of Sandborn and Kline (1961) to

nonstationary free-stream flows. He found that the point of "detachment", where

the time-averaged 'w = 0, coincided with the point of "transitory detachment",

where instantaneous backflow occurs 50% of the time. Such coincidence need not

be universal, a possible exception being backward-facing steps.

In the light of the present review, Simpson's review nicely extends the working

definition of separation to stationary, turbulent detachment if a zone of separation

is admitted as well as a point or line of separation.

To conclude this section, it should also be noted that a variety of schemes have

attempted to control separated flows, including dynamic stall. Most efforts have

used devices that introduce three-dimensionality or other means to bring detached
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vorticity back to the surface, e.g. Humphreys and Reynolds (1988) and the review

by Gad-el-Hak (1989).

In summary, this section has touch.ed on research where a two-dimensional

boundary layer is separating under nonstationary boundary conditions. For such

cases, the phenomena of zero shear stress, reversed flow, and breakaway typically

do not coincide. Consequently a debate has arisen over the appropriate definition.

The prevailing view of the day holds to the MRS condition, which equates break-

away with separation. Nevertheless, the definition of separation adopted for this

paper remains valid for separation under nonstationary conditions. The case for

the saddle-point (zero-shear stress) definition will be strengthened in the following

sections which introduce new factors that research in three-dimensional separation

has brought to light.

2.4 Stationary, Three-dimensional Separation

Investigations of three-dimensional separation have primarily focused on the-

oretical analysis and flow visualization. Several researchers have attempted to

establish a concise classification of the infinite variety of three-dimensional flows,

including separation. Ensuing attempts to distinguish three-dimensional separa-

tion from other three-dimensional flows have been controversial. Reviews by Tobak

and Peake (1982) and Perry and Chong (1987) cover these developments in detail;

this section summarizes the main developments.

Maskell (1955) inaugurated the classification of three-dimensional flows by in-

troducing the concept of "limiting streamlines." Limiting streamlines coincide with

surface shear-stress patterns, and can be visualized by surface flow techniques, for

example oil-film, ablation, and so forth. Limiting streamlines have also been called

"surface streamlines" and "skin-friction lines" in later literature. Throughout this

chapter, the terminology "skin-friction pattern" or "skin-friction lines" is preferred

over either of the "streamline" terms because the no-slip condition at the surface

precludes true streamlines.
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Flow visualization work at ONERA, especially that of Werl6 (1962), the review

by Peake and Tobak (1980), and Bippes (1987) each offer a glimpse of the rich

variety of skin-friction patterns. These sources illustrate beautiful and recurrent

patterns from numerous experiments in stationary flow, e.g. figures 2.4 and 2.5,

which have stimulated intense interest among theoreticians.

Lighthill (1963) laid the foundation for theoretical analysis of three-dimensional

separation. In this landmark paper, Lighthill took surface shear-stress patterns,

i.e. skin-friction lines, that were being observed and mapped them onto a phase

plane, a technique which is familiar to the field of differential equations. All types

of singular points, which are fundamental to the phase plane, appeared: saddle

points, nodes, foci, and their degenerate forms.

Conceptually, the points can be described as follows. A "singular point," see

figure 2.1, is a point where the wall shear stress, Tw, equals zero. A singular point

can either be a "node" or a "saddle point". A "node" is common to an infinite

number of skin-friction lines; if the skin-friction lines spiral into the node then it

is called a "focus". A "saddle point" is common to only two skin-friction lines.

"Ordinary points," which cover the rest of the surface, posses only a single skin-

friction line. Lighthill mathematically defined a saddle point and a node according

to the Jacobian of the shear-stress vector.

With a map of the singular points, a three-dimensional flowfield could then be

classified according to the number and arrangement of these singular points. Subse-

quent theoreticians have extended Lighthill's analysis primarily by the application

of topological principles to the phase plane.

Hunt, Abell, Peterka, & Woo (1978) extended Lighthill's phase-plane analysis by

applying principles from topology. They provide guidelines for discerning between

physically realizable and impossible characterizations of flow about a three-dimen-

sional surface. Their topologic-l analysis derives the following important result

which governs real flows on a simply-connected surface, namely that singular points
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satisfy the equation...

E nodes + Zfoci - saddles = (2.3)

Contours of a flow must satisfy this equation. If a schematic of a flow is drawn

which violates this equation, the schematic " in error 4. The analysis can be

extended for multiply-connected/complex surfaces. For such extensionr however,

minor modifications to equation (2.3) are required.

Due to the work of Lighthill (1963) and Hunt, et al. (1978), there has been

widespread aggreement among the research community over the interpretation and

use of singular points in surface skin-friction patterns. In contrast, there has been

a vigorous debate over how to deal with cases of streamline convergence without a

saddle point, such as shown in figure 2.6. The present review has adopted the term

"isolated line of convergence" or "LOC" for this type of flow. Topologically speak-

ing, there are only ordinary points in the neighborhood of a LOC. Wang (1974),

one of the early researchers to discuss this type of flow pattern, had suggested the

term "open separation."

Legendre (1982) discusses the regular or catastrophic evolution of three-dimen-

sional separation. He reiterates his strict definition for separation, specifically that

a "line of separation ... has no local property. Its only characteristic is to pass

through a saddle point (Legendre, 1956)." He states an uncertainty about applying

his definition to unsteady flow. The working definition adopted for this paper is

simply an extension of Legendre's to unsteady flows.

The informative review by Tobak and Peake (1982) adds finer distinctions to the

field of stationary, three-dimensional separation. They designate the term "'global

separation" for cases when a saddle point is present, such as figure 2.5, and "local

separation" for cases of an isolated line of convergence without a saddle point.

In order to capture the global flowfield, Tobak and Peake extend phase-plane

analysis to "steady dividing surfaces", i.e. a mathematical surface in the flow where

4 An well-regarded example from the literature will be given shortly. The example appears
reasonable but nevertheless violates equation 2.3.
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the normal velocity component is zero. They recognized that the problem with

steady dividing surfaces is that the unsteady structures which are always present in

three-dimensional separated flows are ignored. They offer their definitions strictly

for steady flows, otherwise the working definition would be a subset of theirs.

Hornung and Perry (1984) set out to standardize classification of three-dimen-

sional separations. Before detailing the classification scheme, they define three-

dimensional separation, stationary or nonstationary, based on the strength of the

local convergence of near-wall streamlines. They call a LOC a "negative bifur-

cations," see figure 2.7, which they may call a "separation" if the convergence is

strong enough. Note that a "negative bifurcation" does not contain a saddle point.

They propose the concept of a "degree of separation" based on a "strength of

streamline convergence". Lacking an appropriate length scale, they also acknowl-

edge the difficulty of determining the strength of convergence. The remainder of

the article details a useful classification scheme which identifies clusters of singular

points that frequently occur.

It is important to carefully interpret schematics such as figure 2.7. The prob-

lem is that although figure 2.7 makes the converging skin-friction lines appear to

coalesce, the lines can only asymptote otherwise a nonexistent type of singular

point is required on the line of convergence. No planar singular point exists that

has three inflows, one from the LOC and one from each side of the LOC, and

only one outflow, to the next point on the LOC. If lines truly coalesced, the "line

of convergence" would contain an infinite number of such singular points which

furthermore violates equation (2.3). Thus this figure gives an example of how the

topological analysis represented by equation (2.3) can contradict what appears to

be a reasonable interpretation of near-wall flow.

Perry.and Hornung (1984), a companion to the above article, describes a classi-

fication scheme for the global, three-dimensional, separated flowfield. This scheme

centers on vortex skeletons which can map out the global flowfield under stationary

conditions. One example, the owl-face of the first kind, is shown in figure 2.8. This

type of separation is characterized by a saddle point a little upstream of two foci
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with a second saddle point yet further downstream. By this classification scheme,

Bippes (1987) observed an owl-face of the first kind on an axisymmetrical body

and on an airfoil at angle of attack, see figure 2.5. Moreover, the trailing-edge

separation observed on a stalled airfoil by Winkelmann and Barlow (1980) is an

owl-face of the first kind. Incidentally, the same separation structure is observed

on the flat plate for the experiment described in this dissertation. It is important

to note that a multitude of separation structures other than an owl-face of the first

kind have been observed for stalled airfoils and for axisymmetrical bodies at angle

of attack.

Chapman (1986) also proposes a classification scheme by combining the topolog-

ical rules with collections of singular points. He renames a LOC a "crossflow-type

separation", because "there is a change of the topology of the velocity field in the

crossflow plane." The topology of the skin-friction lines in "crossflow-type sepa-

ration" has not changed, however, because there are only ordinary points in the

immediate neighborhood of the body surface due to the absence of singular points.

Principal evidence for "crossflow-type separation" arises on an axisymmetrical

body at small angle of attack at supersonic speeds; figure 2.6 shows one example at

Mach 2.4. These conditions require careful interpretation of the flowfield. Models

of the flow in the literature have indicated that a pair of streamwise vortices arise

from the LOC, although flow visualization didn't suggest attachment of the vortices

to the surface. Furthermore, flow downstream of the LOC has actually accelerated

while upstream flow approaching the LOC has decelerated. The higher velocity of

downstream fluid is evidenced by the angle between downstream skin-friction lines

and the LOC being considerably shallower than the angle between upstream lines

and the LOC; on both sides, the momentum normal to the LOC must be identical.

With the exception that some vortical fluid near the LOC is carried away from the

wall into the freestream, such a flowfield contradicts most concepts of separation.

The review by Perry and Chong (1987) covers all types of three-dimensional

flows with transient coherent structures, including separated flows. The review is

quite interesting, but most of their proposed approaches for analysis are found to
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encounter acute obstacles. The disadvantage "of using instantaneous streamline

patterns is the sensitivity of such patterns" to the velocity of the reference frame

chosen by the observer. Thus they propose vorticity, because it is invariant, as more

appropriate for analyses of instantaneous streamlines. A major problem that then

arises is the inaccuracy, and almost complete absence, of experimental vorticity

measurements.

Unal (1988) introduces the nomenclature from the field of dynamics in order

to narrowly define singular points. The nature of a singular point is classified as

index 1 if only one streamline leaves the singular point, or as index 2 if a stream

surface leaves the point. He claims to resolve "once and for all" the controversy

regarding "local" or "open" separations, which have no saddle point. Without a

saddle point, there is "...no separated stream surface; hence no separation."

To sum up, classification schemes for three-dimensional flows are caught in

a debate. The primary issue is whether or not to consider an isolated lines of

convergence as "separation." To understand the controversy, consider again the

"negative bifurcation" at a LOC as shown in figure 2.7 (Hornung and Perry, 1984).

Vortical boundary-layer fluid is carried into the outer, potential flow. There is.

however, no point of zero shear stress nor any region of reversed flow as there

was in figure 2.8. Shall a LOC be called a separation? Our working definition,

Lighthill (1963), and Legendre (1956, 1982), and Unal (1988) unequivocally answer

"No!", because there is no saddle point. There is not even a singular point. On

the other hand, Chapman (1986) and others claim that such flows are indeed

separation. Tobak and Peake (1982) would call this is a local separation. Hornung

and Perry (1984) would determine if streamline convergence is strong enough before

deciding.

An incidental observation from this section must be made to clarify terminology.

In fluid mechanical parlance it is almost impossible to say the word "separation"

without following it by the word "bubble." If we take the word "bubble" to refer

to a closed surface across which there is no transfer of fluid particles, then three-

dimensional separations are practically never bubbles. This is not apparent at
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first. For example, Maskell (1953) envisioned closed 3-D bubbles and Moore (1957)

suggested that a 3-D separation may be identified "by the existence of a bubble

of fluid in the boundary not exchanging fluid with its surrounding." Tobak and

Peake (1982), among others, showed that stationary, three-dimensional separations

do not have a re-attachment line that closes with the separation line; topological

rules prohibit it. Instead, a three-dimensional separation region must constantly

exchange fluid with the outer flow. It appears that the only practical case where a

three-dimensional separation would close into a bubble is by capping a cavity flow

at low Reynolds numbers.

Since three-dimensional separations do not close into a bubble, the detached

shear layer experiences instabilities which cause unsteadiness, as Prandtl (1905)

had originally noted. This can happen by the shear layer rolling up and shedding

or by vortex meander and break down.

Through a review of the literature pertaining to stationary, three-dimension-

al separation, this section h-As introduced new elements that arise with the extra

space dimension. For instance, the two-dimensional line of zero shear stress col-

lapses to a singular point. Tools from phase-plane analysis and topology have

been useful for theoretical investigation of 3-D separation and aid the evaluation

of surface flow models. The thrust of the debate regarding the definition for three-

dimensional separation has been whether or not to call the mere convergence of

surface streamline separation. The working definition of separation, adopted from

Legendre (1956, 1982), avoids the inconsistencies and ambiguities of designating

an "isolated line of convergence" as "separation". The next section supports this

extension of Legendre's definition to nonstationary flows as well.

2.5 Nonstationary, three-dimensional separation

Although certain aspects of nonstationary, three-dimensional separation have

been investigated for some time, extensive quantification and analysis of the ve-

locity flowfield has begun fairly recently. Most earlier work focused on flow visu-
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alization or the measurement of the applied aerodynamic forces and moments of

pitching, three-dimensional bodies.

Some recent examples of work on a pitching bodies will be mentioned briefly.

Robinson, et al. (1986) use flow visualization to track the motion of leading-edge

and trailing edge vortices that have shed during dynamic stall. The works of Wood,

Lee, and Roberts (1988) and Roberts and Wood (1989) describe how these vortices

can be controlled by tangential leading-edge blowing. Through small changes in the

surface boundary conditions through tangential leading-edge blowing, a significant

degree of dynamic control is available for maneuvering an aircraft after stall.

Hui (1988) uses the continuity equation to construct a mathematical framework

for steady and unsteady, compressible or incompressible, three-dimensional sepa-

ration. The continuity equation determines flow topology, whereas the momentum

equation only determines magnitude of flow velocities. Most importantly, instanta-

neous stream surfaces from a three-dimensional, unsteady flow can be topologically

analyzed as if the flow were steady.

Pauley, Moin, and Reynolds (1988) perform a comprehensive quantitative inves-

tigation through direct numerical simulation (DNS) for one case of nonstationary,

three-dimensional separation. This case mirrors the geometry and flow conditions

of the base case for this experiment. Only a few conclusions will be listed here. A

more thorough comparison between the DNS and the experiment will be made in

chapter 6.

For three-dimensional separation:

o When a three-dimensional adverse pressure gradient was applied to a two-

dimensional boundary layer on a flat plate, the separation structure passed

through several topologies before becoming an "owl-face of the first kind."

o The detached shear layer became unstable and periodic shedding of shear-

laver vorticity occurred.
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o At the release of the adverse pressure gradient the near wall velocity becomes

positive. A free shear layer persisted further downstream but began to shed

at a higher frequency.

o Velocity profiles indicated that the flow first adjusts near the wall to a change

in pressure gradient. Other aspects of this work were described in ;ection 2.2.

They obtained a convincing definition for breakaway that applies to two- and

three-dimensional flows. Van Dommelen and Cowley (1990) extensively develop

the Lagrangian approach for describing the ejection of vortical boundary-layer

fluid from the wall (breakaway). Their approach establishes a concrete mathe-

matical foundation for for a time-dependent, three-dimensional MRS condition,

thereby providing the best definition 5 of the mathematical singularity at break-

away. Having determined that the momentum equations are completely regular

in the Lagrangian coordinate system, the singularity is shown to appear in the

continuity equation. Van Dommelen (1990) applied the theory to the case of an

impulsively-spun sphere. Lagrangian computations were able to proceed while

Eulerian computations broke down at breakaway.

Van Dommelen and Cowley described the physics of breakaway as follows:

"These singularities occur when a fluid particle becomes compressed in one di-

rection parallel to the boundary [wall]" which forces the fluid particle "out of the

boundary layer in the form of a detached vorticity layer. A common feature of all

the singularities is that the typical lengthscale in the direction of compression is

O(t6t-1)." By their definition, the local displacement thickness of the boundary

layer must also become infinite. As a final comment, it would be helpful to combine

this analysis with that of Hui (1988) since both rely on the continuity equation,

albeit in the search of different separation phenomena.

2.6 Summary

5 The definition will not be given here because the results of this experiment are not cast
according to the Langrangian description. Several pages of new nomenclature and equations are
required.
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A definition for laminar "separation" that applies to two- and three-dimensional,

stationary and nonstationary separation has Leen proposed. The working defini-

tion of "separation" is a region that includes a "separation line" and a "separation

wake." A "separation line" is a surface skin-friction line that passes through a

saddle point. There must be a point, therefore, where Tw = 0 (or Cf = 0) for sep-

aration to exist. The reference frame for this definition is the surface of the solid

body. Sluggish fluid downstream of the separation line is called the "separation

wake". This definition for separation is akin to the one held by Prandtl.

Several alternate definitions for separation have been proposed to offset the

inadequacies of the standard definition of stationary, two-dimensional separation.

The standard definition had associated the zero shear-stress condition with bound-

ary-layer breakaway, reverse flow, and computational instability. It is possible,

however, to find exceptions to practically every definition for separation by con-

sidering nonstationary or three-dimensional effects. This paper's definition is valid

for steady and unsteady, two- and three-dimensional cases.

The debate over the definition of unsteady separation concerns whether or not
to focus on zero shear stress or on the MRS condition. The highly-touted MRS

condition identifies the breakaway of the vortical shear layer from the wall into the

freestream rather than the zero shear-stress condition.

The debate over the definition three-dimensional separation concerns whether

or not to denote the mere convergence of surface skin-friction lines as "separation."

The position of this paper is that a saddle point is required for separation, whether

steady or unsteady, two- or three-dimensional. This view accords with or is an

extension to the views of Legendre (1956, 1982), Lighthill (1963), Unal (1988) and

Hui (1988). Several reasons are forwarded for rejecting the idea that convergent

streamlines constitute separation.

The working definition can be easily amended to include stationary, turbulent

separation if we admit to a zone of separation rather than a point or line of sepa-

ration.

The following conclusions can be highlighted:
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" Most separations are unsteady and three-dimensional.

* The momentum thickness, 0, is significant for scaling separation.

" Phase-plane analysis and topological rules are useful for the investigation of

three-dimensional flows. Since practically any measurement and correlation is

new to the fledgling field of unsteady, three-dimensional flow separation, this ex-

periment and its companion direct numerical simulation by Pauley, et al. (1988)

are able to make a substantial contribution.

28



Roy W. Henk 7/16/90 9:14am

Chapter 3

Facility

The Stanford, Unsteady Boundary Layer, Research Water Tunnel is particular-

ly-well suited for careful investigations of unsteady boundary layers under known

initial and boundary conditions. With this tunnel, stationary or nonstationary,

two- and three-dimensional freestream flows can be generated to perturb a two-

dimensional laminar or turbulent boundary layer. Dynamic control of the free-

stream and acquisition of data proceed under computer control.

This chapter describes the water tunnel and other experimental tools. Special

features of this facility enabled the present experimental investigation on unsteady,

three-dimensional separation. Some of the features were inherited from previous

research. In addition, many enhancements were made through redesign of the test

section and computer-control of the flow.

3.1 The Facility

The experimental facility, figure 3.1, is a closed-circuit water tunnel. Flow fol-

lows a circuit from the overhead tank, through the test section, and into the sump,

from which the water is pumped back to the overhead tank. More specifically, a

weir in the overhead tank maintains the pressure head for the flow. The flow from

the overhead tank is turned into the axial direction of the tunnel. Honeycomb,

three screens, and acceleration through a nozzle attenuate flow turbulence to pro-

vide a relatively low turbulence freestream to the test section. An array of valves

control the freestream velocity, Uoo(x,t), along the test section by withdrawing

fluiJ through the control wall opposite the test surface. Pipes and hose conduct

flow from the valves to the sump.

In the test section, the test boundary layer grows on a flat plate. The bound-

ary layer develops under a stationary, uniform freestream velocity until it reaches
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the nonstationary portion of the test section. At this point, the boundary layer

encounters (1) a stationary, uniform freestream velocity, (2) a stationary, decelerat-

ing freestream, or (3) a computer-controlled, nonstationary freestream waveform.

The growth of the boundary layer and its response to the imposed conditions is

investigated by t,,,o-component velocity measurements.

Flow ranges. The primary flow parameters for this facility are the inlet velocity,

U0 , and the freestream velocity gradient. The inlet velocity can span the range

0.1 to 0.73m/s. The freestream velocity can be reduced up to 0.3m/s over each

streamwise segment, of 0.15m axial extent. The maximum freestream velocity

gradient can be made significantly higher than 0.3/0.15 = 2s - 1 by tailoring suction

through the control wall.

A broad range of chord Reynolds numbers is available. The working length

of the test surfaces extends from 0.5 to 2.6m. The water is typically maintained

at 170 for a kinematic viscosity of 1.081 x 10-6m2/s. Thus the chord Reynolds

number, Ree, can range from 5 X 104 to 2 x 106.

Control of inlet flow. Upstream of the inlet to the test section, flow is turned

several times. Figure 3.1 shows two 900 turns in the overhead tank and one before

the nozzle. Each time this chapter refers to "turning the flow", flow is turned by an

"oblique flow header" with a "free-discharge exit condition" through honeycomb.

Craw-ford (1977) has shown that the exit flow is most uniform when the aspect

ratio of exit area to inlet area, AR - 3. Exit uniformity degrades for AR < 2 or

AR > 4. The AR of the oblique flow header just upstream of the nozzle is 3.0;

consequently a relatively uniform freestream entered the nozzle.

Before the flow enters the test section, it is carefully conditioned to attenuate

turbulence. The flow passes through a 1.0m by 1.0m by 0.15m thick piece of

9.5mm cell honeycomb aid three taut screens of 22 mesh stainless steel at 69.7%

porosity. A 20:1 contraction ratio in the nozzle accelerates the flow from a cross

section of 1.0m by 1.Om into a cross section of 0.35m by 0.15m for entry into the
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test section. At this point, the RMS level of streamwise velocity fluctuations is

F2/Uo < 0.6%, which is the minimum that the measurement system can resolve.

Quality Control. Some subsystems, not shown, operate continuously to ensure the

quality of the flow during the acquisition of extended datasets. A temperature-

control system maintains the water temperature at the desired set poinL ±0.1C.

Entrained air bubbles are removed by a de-aeration system.

3.2 Tunnel Design and Modifications

The original channel, described by Jayaraman, et al. (1982) and Brereton, et

al. (1987), was extensively modified for these experiments. The modified facility

is shown in figure 3.1. The new modular test section features interchangeable

test surfaces, windows, and valves. Computer control of the freestream flow is

performed by an array of custom-designed Revolving-Disc gate valves (RD-valve),

such as the one shown in figure 3.2.

A team of three research assistants was responsible for the present modifications.

The principal author is primarily responsible for design of the test section, the

RD-valves, and most modules that plug into the test section. He also replaced

the temperature control system which, incidentally, reduced electrical noise in the

laboratory. W. W. Humphreys streamlined the plumbing system and the flow

path through the constant-head reservoir. He also designed the turbulent test

surfaces and a sump tank with increased capacity and durability. A. B. Carlson

designed the custom hardware and software for valve control and data acquisition.

Subsequent sections describe the facility in detail.

3.2.1 Test Section

The new test section measures 3.66m along the streamwise direction, 0.36m across

the span, and 0.13m from the test surface to the control wall. Glass and acrylic on

the top, sides, and at the end of the test section provide substantial optical access

for flow visualization and LDA measurements.
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The backbone of the test section is a stainless steel framework. The stainless

steel bars are sealed at the joints by Boatlife® boat caulk for a durable, corrosion

resistant, and leak resistant framework. Four cross-flanges span the top to furnish

lateral reinforcement and a sealing surface for test surface modules. The two side

walls are each composed of eight interlocking side frames. Twenty-four cross-

girders span the bottom of the test section, dividing it into twenty-four stations.

Stainless steel plates cover two stations to support the frame structure. Remaining

stations provide access for control valves. An end frame terminates the downstream

side of the framework.

Plug-in modules on each side of the framework enclose the test section and

maintain a smooth surface in the axial direction for on the top, side, and bottom

walls. Three drop-in test surfaces, tailored for individual experiments, fit into the

top of the test section. Continuity between the test surfaces is brought about by

inserts that fit under the cross-flanges. The first cross-flange also supports the

leading-edge module and the bypass-bleed assembly. An acrylic window sets into

each side frame to provide optical access. At the joint between side frames, a bleed

manifold removes part of the side-wall boundary layer. Drain plates line the inside

of the control wall. An array of manual and RD-valves are attached to the outside

of the control wall.

Leading edge. Just upstream of the test surface is a module supporting the leading

edge, figure 3.3. A fresh boundary layer is started on the leading edge for laminar

and turbulent experiments.

The critical feature the stainless-steel leading edge is its shape: a half-elliptical

nose with a major to minor axis ratio of 16:1. The half-ellipse imposes a marginally

favorable pressure gradient on the new laminar boundary layer and inhibits the

formation of an unpredictable leading-edge separation bubble. At a length of

50.8mm from the tip, the elliptical curve tangents with a flat surface. This piece

was fabricated on a N-C mill and its surface hand-polished to 400 grit.
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At the junction between the leading edge and the test surface, figure 3.4, there

is a 0.15mm slot for the injection of dye during flow visualization. The edge of the

slot forms a backward-facing step of h < 0.3mm with respect to the test surface.

Several factors were considered in the placement of the leading edge. Two

reasons for selecting a backward-facing step were:

1. to avoid a forward-facing step which would generate larger perturbations on

the laminar boundary layer than the backward-facing step, and

2. to diminish boundary-layer perturbations from dye injection during flow vi-

sualization. Consequently a laminar two-dimensional free-shear layer formed

at this junction but it also reattached before transition could occur.

Bypass bleed. Also shown in figure 3.4 is the bypass bleed. The bypass was

designed to uniformly extract flow at the inlet to the test section. Hexcel® honey-

comb and contractions direct bypass fluid to four manually adjusted valves. Valves

are trimmed to give uniform flow across the span. Mass flow rate through the by-

pass is set such that the stagnation point is on the lower (test surface) side of the

leading edge. With the stagnation point at this location, a fresh, laminar boundary

layer is generated on the test surface.

Bubble wire / Trip. Near the leading edge, a mobile wire was installed for the

dual purposes of hydrogen-bubble flow visualization and boundary-layer trip. The

wire is a crimped piece of 0.13mm diameter stainless steel wire. When energized,

dense streams of hydrogen bubbles emit from the crimped wire. The wire can

be rotated forward to visualize flow around the leading edge. The wire can also

be rotated until it contacts the test surface at a streamwise location of 0.128m.

At this location the wire trips the boundary layer for turbulent boundary-layer

experiments.

Test surfaces. Drop-in test surfaces form the top wall of the test section. To-

gether they extend to a 3.Om chord for flat-plate boundary-layer experiments, but

individually these are tailored for specific experiments.
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The laminar boundary-layer test surface, 1.37m long, is a 19mm thick sheet of

float glass encased in a stainless steel frame. Float glass was chosen to optimize flow

visualization. The significantly higher value of Young's modulus for glass meant

that structural-support ribs that hinder optical access through acrylic surfaces were

unnecessary. Since mechanical access was not needed through the test surface, the

brittleness of glass was not a factor.

Downstream test surfaces were fabricated out of 19mm thick acrylic stiffened

by spanwise ribs every 0.23m. The turbulent test surface, 1.37m long, has two

smaller ports for specialized test surfaces. These ports enable rapid change of

test configurations. To date these ports have been used for an array of vortex

generators, a dye slot, and a heat transfer surface. The exit-section test surface

supports a 13mm float-glass plate at a 150 angle to the axis of the tunnel. This glass

plate, required for the uniform deflection of flow to the exit valves, also permits

optical access upstream through the end of the tunnel.

Optical access through all test surfaces enhanced flow visualization. It also

enabled measurement of the spanwise velocity component by passing the LDA

beams .through the surfaces.

Control wall is perforated for tailoring the freestream. The control wall is parallel

to the test surface and 0.13m away from it. This wall is partitioned into twenty-

four 0.15m intervals along the streamwise direction. A PVC plate is fastened in

place over each one of these intervals to provide a reasonably smooth surface for

the boundary layer on the control wall.

Flow is bled through the control wall to remove its boundary layer and to lo-

cally control the freestream velocity gradient. Each p'te is perforated according to

the type of freestream control required. For example, at a location where the free-

stream gradient is nominally zero and stationary, the plate contains two staggered,

spanwise rows of 3.2mm diameter holes for a total open area of S90mm2 , figure 3.5a.

The majority of plates are of this type 1 design. Type 2 plates, figure 3.5b, are

used at locations where a strong streamwise, freestream-velocity is to be imposed.
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Each type 2 plate is perforated with nine staggered rows of 6.4 mm holes for a total

open area of 21000mm 2 . Fluid is withdrawn uniformly across the span through

plates of type 1 and 2. Type 2 plates are used to generate a nominally 2-D separa-

tion. This experiment used a type 3 plate, which contains a single, centered hole

38.1mm square. The singular hole concentrates outflow through the control wall

in order to impose the local streamwise and spanwise pressure gradients necessary

to generate a three-dimensional separation on the test surface.

Flow passing through a plate enters a valve manifG!.I, which smoothly directs

the flow to a control valve. For type I plates, flow passes through a manual valve

into the air purge/drain down system and then into the sump tank. For type 2

and 3 plates, a computer-controlled valve regulates the flow and sends it through

a downcomer directly into the sump tank.

Dynamic control of flow. Manual or computer-controlled valves, figure 3.6, control

the amount of flow bled through the control wall during stationary and nonstation-

ary flow conditions. Near the exhaust of each valve is a fixed reference pressure of 0

gage which assures consistent operation of the valve. For the computer-controlled

valves, 0 gage pressure is set at the orifice. For manual valves, 0 gage occurs 0.3m

downstream from the valve at the junction with the air-purge/drain-down system.

Computer-controlled valves will be described more fully in section 3.3.

Side frames and windows. Eight stainless-steel side frames provide the structural

support for each side of the tunnel. Each side frame is 0.46m long and 0.24m

deep. Adjoining frames interlock to form a slot for side-wall bleed. Precision

craftsmanship of the side frames ensured that the cross-sectional area of the tunnel

deviates at most by ±0.07% between 0.46m sections. A row of windows set into

side frames of the test section to form a smooth surface for the side-wall boundary

layer.

Side windows, of 25mm acrylic, provide abundant optical access for two-com-

ponent velocity measurements and flow visualization. Each window has an unob-

structed optical area of 0.39m long by 0.17m deep. Since the unobstructed area
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extends past the edges of the test-surface and control-wall planes, near-wall mea-

surements by the LDA are possible. The joint between frames causes a 64mm

optical obstruction in the streamwise direction.

Side windows are fastened around their perimeter to the side frames. Since side

windows are sealed to frames via O-rings, -ide windows furnish the quickest access

to the interior of the tunnel for cleaning or for exchanging other modules.

Side wall bleeds. At the joint between sections, a side-wall bleed slot removes the

inner layer of the side-wall boundary layer. The 0.25mm wide slot extends over the

0.15m depth of the tunnel, intersecting both test-surface and control-wall planes,

in order to affect the entire side-wall boundary layer. Bleed flow turns 450 as it

enters the slot. The slot is canted 45' with respect to the tunnel axis and the slot

edges are rounded to inhibit separation of the side-wall boundary layer at the slot

inlet. Bleed flow passes into a small manifold where it is uniformly turned toward

a regulating valve, which governs the mass flowrate through the side bleed.

3.2.2 Special Subsystems for quality control

Three subsystems gave control over the quality of the flow. These maintained the

integrity of experimental results by compensating for environmental changes and

for corruption of the working fluid.

Temperature control. A dedicated water chiller and temperature controller tightly

held the temperature of tunnel water at 17.0±0.1' C throughout these experiments.

There are several reasons for chilling the water. The first is to fix fluid properties,

such as viscosity and density, during extended phase-averaged profiles. Secondly,

the growth of algae was inhibited. Thirdly, the entire facility leaks far less at lower

temperatures.

Failure of the former temperature control system required that a new temper-

ature controller and water chiller be installed. The replacement chiller is a 5 ton

Carrier® 38EH060 Compressor with a 09WQ060 Heat Exchanger. It more closely

matches our standard load than the former 10 ton Trane® unit. The temperature
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controller, Omega(& CN 9000, senses the temperature in the tunnel exit section

via a RTD thermistor. The temperature controller operates in PID mode for more

intelligent control than the former thermostat. When the target temperature is

reached, the controller switches a solenoid valve to direct 50% of the fluid from

the heat exchanger through a bypass loop, decreasing the thermal load on the

compressor.

Air-purge/Drain-down system. This system serves two purposes, one to expedite

data-readiness of the tunnel and the second for quality control of all data runs.

As air purge, the system forces air trapped in low-velocity, opposite- and side-

wall boundary-layer control assemblies into the test section where it can easily be

removed. The entire test section can then be free of air bubbles within two hours.

As drain down, the pipe provides an outlet for fluid withdrawn through control-

and side-wall assemblies. The system sets atmospheric pressure at the exit for

these assemblies. Atmospheric pressure is set in the pipe by venting one of the

ports to the atmosphere. The pipe conveys exhaust fluid directly to the sump.

De-aeration. Water returning to the sump is violently and effectively aerated at

the air/water interface. In order to prevent microbubbles at the test surface, it

is necessary to continually remove air and dissolved air from the water. To do

this, flow (about 4gpm) is bled from the pipe that feeds the overhead tank. The

water cavitates at a venturi and the bubbles accumulate in a centrifugal separator

held at 25inHg vacuum. At the bottom of the settling chamber a pipe removes

the de-aerated water. A pump boosts the fluid pressure and returns it to the pipe

which feeds the main and chiller pump.

3.3 Valve design and control

A custom valve was designed for accurate control of the transient pressure gradi-

ent. The design was mandated after a fruitless search for a computer-controllable,

fast-response, large-flowrate water valve. The resulting product is a revolving-disc

gate valve (RD-valve) as shown in figure 3.2. The primary design feature is a
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slotted stainless-steel sprocket that revolves atop a slotted Delrin® bearing/seal.

Open area of the valve corresponds to the overlap of these respective slots. The

principle is similar to that of Kraft® grated-cheese containers.

3.3.1 Valve Specifications

Valve specifications are:

* a maximum pressure drop, AP, of approximately 3psi or 1/5atm.

* a variable-capacity flowrate up to 240gpm.

• fast dynamic response in order to follow waveforms as demanding as square

waves at frequencies of up to 1OHz.

* precise position control for computer-generated waveforms.

* leak tight when fully closed is desirable but not essential.

* durability for tens of thousands of repetitions during datasets that extend for

weeks.

* one dimension that does not exceed 0.15m so that it can fit in neighboring

streamwise stations along the control wall.

* reasonable cost, since several valves were needed at one time.

3.3.2 Description of the revolving-disc valve The RD-valve,

shown in figure 3.7 minus its housing, measures 1Sin spanning the tunnel x 5.75in

for each streamwise segment x loin high. The low-pressure-drop specification

meant that a durable valve housing could be fabricated from plastic instead of

metal. The RD-valve weighs about 251b so it can be reasonably handled by a

single graduate student during installation or repair; the brawn of two students

is preferred. Fabrication of these custom valves cost about $1000; the cost of the

drive system doubled the cost to a total of $2000.

Valve capacity at low pressure drop. The RD-valve exists in two versions, one for

coarse variation of the flow and one for finer variation. The only difference between

the versions is the area of the slot cut through the 4 in revolving sprocket (hereafter
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"disc"). The requirement of a large flowrate at a low pressure drop necessitated a

large open area of the valve orifice in the coarse version. The coarse RD-valve disc

has a slot area of 4.64in2 = 0.00300m 2 . The fine RD-valve disc has a slot area of

1.29in 2 = 0.000833m 2 .

Two types of valve coefficients will be given for the revolving-disk valve: the

discharge coefficient Cd, which is familiar to mechanical engineering academics;

and the valve coefficient Cv, which is familiar to valve manufacturers.

The discharge coefficient is defined by the equation Cd(a) = Qactual/Qideal.

The numerator is determined experimentally. Figure 3.8 shows the volume flow-

rate for coarse and fine RD-valves versus open angle. Both valves show a linear

Qactual(a). The denominator is given by the formula Qideal(a) = m(a)V /p.

Since A(a) is also linear, Cd is simply the ratio of the slopes. Thus Cd = 0.80 for

the coarse valve and Cd = 0.83 for the fine valve. These values for Cd values are

within the range typical for orifices.

The valve coefficient is defined by the equation C, = Q \/S.G./AP and has

units [gpm/psi1 / 2]. The coarse valve has a maximum C, = 550 and the fine

valve a maximum C, = 160. For the sake of comparison, a generic 4in valve has

Cv , 200.

Computer control. The open position of an RD-valve is set by computer control to

any one of 256 increments between closed and full open. Valve position is varied

over time to create waveforms of suction for control of the freestream velocity

gradient. Sine, triangle, and square waveforms are preprogrammed with interactive

adjustment of the amplitude, offset, phase delay, and period of the waveform.

Arbitrary waveforms can also be programmed.

In the hybrid control scheme, a dedicated IBM® PC delivered open-loop po-

sition commands to closed-loop analog control systems at each valve. A Scien-

tific Solutions, Inc.® Lab Tender board provided communication between PC and

the custom analog control box. The computer monitored the status of all valves

through this board. The analog control loop determined valve position via a rotary,
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variable-displacement transducer and used this information to close the loop. The

result was a wide-bandwidth (fast) control system that gave precise position control

necessary for repeatable datasets. Power is only required to change valve position;

no power is required to hold a fixed valve position. Circuitry and software to drive

the valves were designed by A. B. Carlson, a fellow graduate student. Further

details of the flexible hardware/software interface are given by Carlson (1990).

Fast-response. A fast dynamic response meant that the number of moving parts

in the valve should be kept to a minimum and that the analog control system

must possess substantial power. The valve had only four moving parts: the slotted

stainless-steel disc, the drive sprocket, one belt and a pump seal. Motion of the

sprockets and pump seal was rotary. Except for the zero-backlash belt, each moving

part was symmetrical about its axis of rotation to reduce vibration.

The analog control system contained three main components. High torques were

provided by printed-circuit motors by PMI Motors®, of Kollmorgen Corp., model

number U12M4H. These flat dc motors can sustain continuous torques of 220oz-

in, and pulse torques of 2300oz-in. A Sorensen® DCR 40-125A Power Supply

empowered the motors. Rotary variable-displacement transducers (RVDT), model

23330, by Pickering and Co.®, sensed shaft position for analog feedback.

The valve was tested under load. It responded without distortion to waveforms

as severe as a 40Hz square wave, full closed to full open.

There was one commercial valve that had the same response time and capac-

ity as the RD-valve. It is manufactured by the Digital Valve Company®. This

valve, however, was over-designed, oversized, and overpriced for this application-

it would handle pressure drops of 300psi, weighed one ton, and cost $50K.

Benefits of Linearity. By design the open area of the valve, A, was a linear function

of open angle, a. If the RD-valve had a discharge capacity that was not a linear

function of the open angle, waveform corrections could have been implemented

in software. Since the valve discharge coefficient, Cd, was constant, no software

correction was required.
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3.4 Velocity Measurement Systems

Two Laser Doppler Anemometer (LDA) systems operated concurrently during

data acquisition. One LDA was stationed at the entrance to the test section to

measure the inlet velocity . Downstream, the second LDA measured the velocity

field of the separated flow.

Dantek HeNe LDA. A one-color, one-component, 5mrIV HeNe LDA system op-

erating in forward-scatter, tracking mode was used to set and monitor the inlet

freestream velocity. The laser, transmitting optics, and receiving optics were all

affixed to a custom yoke which rested on the tunnel frame. The DA and yoke

assembly had no provision for automatic traversing, but could be positioned man-

ually anywhere along the tunnel.

TSI two-color LDA. A special LDA built up chiefly from TSI components was used

to make simultaneous u- and v-velocity measurements. The beam from a 4 WLexel

model 95 Argon-ion laser was folded through the LDA breadboard. A dichroic color

separator split the beam into green and blue beams. The blue beam (488nm), or

reserve for the w-component, was discarded. The green beam (514.5nm) was split

into three beams: a 40MHz Bragg-shifted beam for the u-component, a 38MHz

Bragg-shifted beam for the v-component, and a nonshifted reference beam. A TSI

9186A mixer supplied the Bragg signal for the u-component. An IntraAction ME-

42 light-modulator signal processor drove an IntraAction AOM-40T acousto-optic

light modulator for the 38MHz v-component Bragg shift. Beams were Bragg-shifted

in order that reversed flow can be meas:ired; two shift frequencies were chosen in

order that the two velocity signals could be distinguished in later processing. The

beams passed through a beam expanded so that the beam waists would narrow

when focused. Transmitting optics folded the expanded beams towards the test

section and a 480mm lens focused the beams into a LDA measuring volume.

Light scattered from the LDA measuring volume was picked up in forward-

scattering mode by the receiving optics. A 200pm pinhole in the field-stop system
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blocked out extraneous light signals. A color separator split the remaining light;

green carried the signals for u- and v-components; blue was ignored because it had

been set aside for the w-component. Finally a photomultiplier (PMT) converted

the light signal to a electrical signal for further processing.

The electrical signal was then processed as follows. The output from the PMT

was delivered to two TSI 9186A downmixers. One of the downmixers subtracted off

40MHz with a 200kH: offset to give the downmixed u-signal. The other downmixer

subtracted off 38MHz with a 200kHz offset to give the downmixed v-signal. Each

downmixed signal was processed by a band-pass filter with cutoffs at 50kHz and

600kIIz before entering its respective TSI 1090 tracker. Of most importance was the

removal of an extraneous 2MHz signal which resulted from the interaction of the

38MHz Bragg shift for the v-channel with the 40MHz Bragg shift for the u-channel.

Each tracker converted the frequency of the processed signal into a DC voltage.

An A/D converter performed the final signal processing for the data-acquisition

system.

The TSI LDA is mounted on a traverse that permits movement of the mea-

suring volume in all spatial directions. Motion normal to the test surface, the

y-direction, is automated for velocity surveys, which can continue for days without

intervention. Receiving optics tracked the LDA measuring volume by traversing

the y-direction concurrently with the transmitting optics. The whole LDA system

moved together during manual traverses in the z- and z-directions. Detailed de-

scriptions of the LDA and traverse system for two-color, two- and three-component

velocity measurements are given by Brereton L Reynolds (1986) and Humphreys &

Reynolds (1988). Humphreys & Reynolds (1988) also gives a helpful and detailed

procedure for selecting the pinhole size of the field-stop system.

Although Humphreys configured this LDA for measurement of all three velocity

components, the u-component was not measured for two reasons:

1. most nonstationary, phase-averaged data was acquired on the centerline of

the tunnel where w is negligible, and

42



Roy W. Henk 7/16/90 9:14am

2. substantial time is invested in realigning three-component optics whenever

the LDA is manually traversed. Documentation of the three-dimensional

flowfield required frequent manual traverses. The procedure for setting up

the LDA and its accompanying signal-processing equipment is described in

detail in Appendix B.

3.5 Computer-controlled data acquisition and processing

A dedicated 10MHz AST® Premium 286 personal computer controlled data

acquisition and y-traverses of the two-component LDA. Output signals from the

two trackers were brought into two channels of the A/D converter. A Scientific

Solutions, Inc.® Lab Master board, model TM-40-PGH, provided programmable-

gain A/D processing. When triggered, the two channels were sampled sequentially

within a period of 50 microseconds rather than simultaneously via sample/hold.

Two trigger lines between acquisition PC and the valve-control PC maintained

synchronization between the two computers during data acquisition. The valve-

control PC triggered one line to give the zero-phase reference. It also triggered the

second line at every phase to maintain phase-synchronization.

Further details of the data-acquisition subsystem are given by Carlson (1990).

Menu-driven software for both data acquisition and valve control, originally written

by A.B. Carlson, was enhanced by the principal author.

For this experiment sample size varied depending on the manner that data was

processed. Time-averages were derived from 20,000 samples collected at 200Hz.

Phase-averages, partitioned into 512 distinct phases, were derived from 200 real-

izations (or cycles). Nonaveraged data was collected for post-processing of power

spectra and also for validating the convergence of velocity averages. When phase-

averaging 200 cycles, phase-mean velocities (u) and (v) converged to within 2%,

while double-product terms converged to w: hin 15%.

3.6 Summary
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The Stanford, Unsteady Boundary Layer, Research Water Tunnel has many

special features which suit it for quality nonstationary boundary-layer experiments.

It's capabilities have been improved through redesign and replacement of the test

section and computer-controlled valves. This chapter has described the facility

and other experimental tools used for this investigation in unsteady, three-dimen-

sional separation. The next chapter will discuss the mathematical tools used for

the reduction and analysis of data collected.

Details of the documentation of this facility will be given in chapter 5.
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Chapter 4

Equations and Approximations

This chapter describes the mathematical tools-equations, approximations, and

methods-that guide the analysis of data acquired. In section 4.1, the techniques

of time- and phase-averaging will be discussed. The following section examines the

stationary flowfield for the geometry and boundary conditions of this experiment

by potential-flow analysis. Finally, section 4.3 validates integral parameters for

the boundary layer during the adverse flow conditions that produced separation.

New definitions for integral parameters that rely on the potential-flow analysis are

proposed. Chapters 5 and 6 will present integral parameters for time- and phase-

averaged u-velocity profiles that were calculated according to these new definitions.

4.1 Velocity decompositions

.Since it is not possible to measure the entire three-dimensional flowfield simulta-

neously, averaging techniques must be implemented for the acquisition and analysis

of data.

For steady initial and boundary conditions, standard practice decomposes the

velocity measurement into a time-averaged mean and an instantaneous fluctuating

component

u = U + u'. (4.1)

For forced unsteady flow, an appropriate averaging technique follows the phase-

or ensemble-averaging derivations developed by Hussain and Reynolds (1970). For

example, in cases of periodic forcing of flow about a mean. there is the triple

decomposition

u = U + i + u'. (4.2)
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The new term i is the deviation from the time-mean velocity at each phase. Many

repetitions of the forced waveform cycle are required to establish representative

values at each phase. Phase- or ensemble-averaging supplies U + fi = (u) and

u' directly. The u' term, however, assimilates cycle-to-cycle variations as well as

instantaneous fluctuations. In practice, the U term is derived from a averagc of the

ensemble averages and then subtracted out to obtain ft at each phase. Brereton

and Reynolds (1987) give an extensive derivation of the equations resulting from

the triple decomposition.

For this experiment the forcing is a long-period square wave which forces the

flow to alternate between two states: one at zero pressure gradient, the other at

a fixed, adverse freestream-velocity gradient. Thus, the time-averaged mean, U,

loses usefulness altogether. Instead a double decomposition

u = (u) + U', (4.3)

where (u) denotes phase-mean velocity, is most appropriate. As in the triple

decomposition, instantaneous fluctuations and cycle-to-cycle variations are both

absorbed in u' terms.

For this experiment, time-averages were formed from accumulations of 20,000

samples. Phase-averages were formed from 200 realizations, where the cycle of

each realization was partitioned into 512 distinct phases.

4.2 Potential-Flow Analysis

Potential-flow analysis provides a useful estimate of the irrotational freestream

flowfield that results from the geometry of this experiment and the velocity gradient

generated at the control wall. The freestream is found to be a three-dimensional

velocity field Upo, = G(x, y, z, UO, S), rather than be a uniform velocity.

Potential-flow estimates were constructed by analyzing a simplified flow without

walls and then by reflecting images to generate walls. First, analytic functions were

found for for the u-, v-, and w-velocity components due to a finite-area square sink
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embedded in a uniform velocity flow of infinite extent. Then, symmetrical sets

of image flowfields were reflected until the relative velocity correction was less

than 10- 4 U0 . Up to several thousand images were required to adequately resolve

the test-surface and side walls of the tunnel. Details of this analysis are given in

appendix C. An example of the estimated pressure-field Cp(x, z) on the test surface

is shown in figure 4.1 for the base case flow.

The utility of the potential-flow analysis was extended by finding a function

that locally fits the velocity field. In appendix C it is shown that on the centerline,

the polynomial g(y) = CO + C2 • y2 fits Upot to within 1%, where C O and C2 are

functions of (x, U, S).

The most significant problem limiting a potential-flow analysis is that blockage

due to boundary-layers has been neglected. Separated boundary layers cause even

greater blockage. For most of the flow cases investigated in this experiment, block-

age apparently did not cause significant error. Figure 4.2 confirms the excellent fit

of g(y) to the outer six points of a velocity profile of the separated flow.

4.3 Integral representations of boundary layers

Integral parameters give a general view of the local boundary layer and provide

good comparison with other research. The displacement thickness 6*, a statement

of the steady-flow, mass-conservation equation, marks an equivalent displacement

of the potential freestream flow. The momentum thickness 0 is often used for the

correlation of data.

Standard definitions for the integral parameters assume a uniform velocity field

at velocity U some finite distance normal to the test surface. The standard

equations of displacement thickness 3*, and momentum thickness, 0, are:

Displacement thickness

dy (4.3)
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Momentum thickness

0(X, t) = o (U) (1 - U--() ) dy (4.4)

The shape factor is derived from the above parameters, H = */0, and com-

monly indicates the health or robustness of the boundary layer. In many circum-

stances, a "healthy" or "robust" boundary layer has a low H indicating one that is

not separated nor is prone to separate: for laminar boundary layers, Hsep - 3.7;

for turbulent boundary layers, Hsep ranges from 1.8 to 2.4 (Cebeci and Bradshaw,

1977). A related parameter

H-1 6* -o
h = H-= P 0 (4.5)

developed by Kline, et al. (1983), correlates unsteady turbulent detachment well.

This parameter also avoids such degeneracies as H becoming infinite.

4.*.1 Redefining integral parameters

In section 4.2 it was shown that the freestream velocity field Up0 t = g(x, y, z, UO, S)

was three-dimensional instead of uniform. Consequently, there is no uniform ref-

erence velocity to substitute into the standard integral equations listed above. It

became necessary to revise the definitions of the integral parameters in terms of

Upot. New equations for integral parameters were derived by (1) returning to the

principles used to obtain the original equations for a uniform velocity field, and (2)

applying these principles to the potential velocity field. Spalart (1990) proposed a

set of definitions for integral parameters based on vorticity. His definitions are con-

ceptually superior to the definitions proposed here but impractical for experiments,

since experimental vorticity estimates are error-prone.

Definitions for integral parameters are complicated by skewing of boundary lay-

ers in three-dimensional flow. This complication has been avoided altogether by

confining analysis to the centerline of the channel where the w-velocity compo-

nent is negligible. The defining equations are simplified further by the use of the

polynomial g(y) = CO + C2y 2 for the potential velocity profile.
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New equations for the integral parameters are:

Displacement thickness

S+ C263 (g-((4.6)

Momentum thickness

C0O + + 5 = (u)(g - u))(4.7)

The cubic and quintic equations were easily solved using a classic root-finding

routine. Rules that selected the answer from all the roots found are:

1. * and 0 must real valued.

2. 0 < * < 2699, and (4.8)

3. II < 6*.

4.3.2 Search for the upper limit

The main impediment to integrating experimental boundary-layer data is deter-

mining a satisfactory upper limit, i.e. the interface between the viscous boundary

laver and the potential freestream; the lower limit is the wall. For this experiment,

the problem is further complicated due to the three-dimensional Upot. Incidentally,

this search corresponds to finding the border between the Middle and Upper decks

as discussed by Smith, et al. (1981).

Three candidate algorithms were considered for determining the edge of the

boundary layer:

1. Fit outer datapoints of the averaged profile to the analytical potential-flow

profile. When an inner datapoint differs markedly from the analytical profile,

mark the edge of the profile. Interpolate y's to find y99 at u = 0.99Upot.

2. Set y, = y at the Unaz of the velocity profile.

At least three problems surfaced with the second approach: (a) Error analysis

has shown a relative error of 0.02.U0 in the u-velocity. Consequently the max-

imum velocity can arbitrarily appear anywhere from the edge of the boundary
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layer to the outer edge of the sampling domain for even zero pressure-gra-

dient cases. These outer datapoints are spaced at large Ay's which made

large contributions to Simpson's rule integration. The momentum thickness

could vary as much as 10% depending on which outer point was selected. (b)

When suction is :mposed, there is always a question as to which datapoint

best represents Uo0. For velocity profiles upstream of the suction port, the

velocity u increases monotonically with y. For velocity profiles downstream

of the suction port, strong spanwise vortices induce peak velocities within the

boundary layer and not necessarily at its edge. (c) The edge of the boundary

layer may not coincide exactly with one of the datapoints.

3. Fit the whole profile to one of the standard boundary-layer approximation

formulas. This approach was abandoned because the standard formulas apply

to steady, two-dimensional boundary layers and do not attempt to model the

separated zone. Figure 4.2 displays the displacement-thickness areas to be

integrated as identified by algorithms (1) and (2). The irrotational freestream

profile is given by the curve g(y) which divides the light and dark gray regions.

Clearly, algorithm (1) detects the departure of the boundary layer from the

freestream profile better than algorithm (2). Figure 4.3 shows how algorithms

(1) and (2) compare for the calculation of 0 over time at a point within the

developing separation, (z = LP:1, z = 0, flow Case 10).

The two algorithms also generate different estimates for U,,. The estimate for

Uo from algorithm (1) is the coefficient Co. From algorithm (2) U00 = Umax.

Figure 4.4 shows the estimates of Uc, by these two schemes. It is interesting to

compare the estimates during the zero pressure-gradient conditions, i.e. from t =

-4s to Os. Algorithm (1) determines Uoo, = 0.2156m/s ± 0.0006 whereas algorithm

(2) determines Uma = 0.2170 + 0.0011.

Algorithm (1) was chosen and used exclusively for integrating boundary layers

in this report. The upper limit for the integrals in equations 4.6 and 4.7 is now

y = 699 instead of y --+ o.. For the sake of reference, Table 4.1 presents integral
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parameters for the Blasius, zero pressure-gradient, velocity profile for both upper

limits.

4.3.3 Search for the lower limit

The lower limit for the integral parameters is the test-surface wall. The location

of the wall had to be estimated via an offset Ywal, however, because the zero

reference on the LDA traverse mechanism did not correspond to the true location

of the wall.

Determining Ywa1 was a three step process. The first step entailed the initial

positioning of the LDA measuring volume during run time. The LDA measuring

volume was traversed towards the wall until it upon the wall, at which point the

LDA tracker would saturate. The measuring volume was then traversed 75 x 10-6 m

away from the wall and the traverse reference point reset to zero. The second step

was the acquisition of a 40-point velocity profile for one of the UO at zero pres-

sure-gradient conditions. For the third step, a series of linear regressions would

then be made from the near-wall datapoints and the smallest YwaII that satisfied

0 < Ywall < 75 x 10- 6 m would be selected.

A linear regression was found to be the optimal fit for the experimental, near-

wall datapoints of a laminar, zero pressure-gradient, boundary-layer profile, U(y).

A polynomial expansion of the Blasius, self-similar differential equation for the

profile gives the formula p(y) = Cy - (C 2 /48)y 4 + ... ; U(y). The linear term is

more significant (according to theory) and more robust (according to experience)

than the higher-order terms.

4.4 Summary

This chapter has spelled out the mathematical techniques and approximations

that have been used for the acquisition and analysis of data for this investigation.

The first section described the techniques of time- and phase-averaging data. The

second section showed that a potential-flow analysis adequately approximated the
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freestream flow during adverse velocity-gradient conditions. The final section pro-

posed an set of equations that redefine the integral boundary-layer parameters and

justified the methods used to determine the upper and lower limits.
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Chapter 5

Experimental Plan

This chapter describes the experimental plan that guided the acquisition of

data. Section 5.1 specifies the parameter space and cases chosen for investigation,

the measurement stations, and the scales for non-dimensionalization of results.

Section 5.2 validates the tunnel flow for stationary, uniform freestream velocity

conditions, for stationary, adverse velocity-gradient conditions, and finally for non-

stationary conditions. Section 5.3 presents some observations of the time-averaged,

stationary, three-dimensional separation and examines, in particular, the growth

of the integral parameters.

5.1 Parameter space, measurement stations, and scales

This experimental study focused on three-dimensional flow separation at low

Reynolds numbers, where 210 < Re o < 290 near the separation point. The corre-

sponding chord Reynolds numbers, Rec, ranged from 7 x 104 to 1.3 x 105. Several

parameters had to be chosen in order to narrow the scope of this investigation

while sampling a broad parameter space.

One of the key features of this investigation is that a constant inlet velocity

was chosen in order to keep initial and boundary conditions well-defined. This

investigation, therefore, was able to avoid the complications due to time variations

of the leading-edge vorticity that plague much research in unsteady boundary-layer

flow.

5.1.1 Flow cases

The parameters that were varied were the inlet flow velocity, U0, and the freestream

velocity gradient, Uow(r, z, t), via suction through the control wall. Four inlet

velocities, U0 were chosen and held constant during stationary and nonstationary
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cases. The upstream conditions for each of the UO are listed in table 5.1a. The

values for inlet flowrate in table 5.1a are derived by multiplying the inlet velocity

by the cross-sectional area. The values for OoP.G and Reo are derived from a fit

of laminar, zero pressure-gradient theory to 32 velocity profiles listed in table 5.2.

The velocity profiles were collected for all four UO at several streamwise stations,

LP:u.

Flexibility of the tunnel design offered many options for regulating the free-

stream velocity gradient via suction through the control wall. The shape of the

suction port and the suction flowrate had to be selected. A type-3 plate was in-

stalled on the control wall to tailor suction so that a three-dimensional separation

could be generated on the test surface (see heading Control wall.., in subsec-

tion 3.2.1). The upstream edge of the square port in the plate was positioned at

x = 0.613m.

The waveform of the suction strength governs the time-behavior of the suc-

tion flowrate. Computer control of the RD-valves guaranteed repeatable suction

through the plate. The shape, period, and amplitude S of the suction waveform

could all be varied. A square-wave shape was chosen in order to distinguish be-

tween the fast and slow responses of the boundary layer to a suddenly-imposed

freestream gradient. The square wave had a total period of 20.48s: 10.24s with the

suction 'off' to allow a two-dimensional Blasius boundary layer to establish itself

on the test surface, and 10.24s with the suction 'on' to complete the evolution to a

quasi-steady, three-dimensional separation. Preliminary tests had shown that this

period was of adequate but not excessive duration for the chosen U0 .

Table 5.1b lists the six suction strengths, S, that were chosen in addition to a

'no suction,' uniform freestream condition. Case numbers for each U0 and S are

given for later reference. The volume flowrates for each S are obtained from the

valve calibration given in section 3.3.2. Suction waveforms during nonstationarv

conditions are shown in figure 5.1. During stationary, adverse freestream-gradient

conditions the suction S is maintained at the volume flowrate for "valve open." In
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addition, table 5.] b shows the relation of S to percentage of the inlet flow given in

table 5.1a and to pressure-gradient estimates from potential-flow analysis.

All (UO, S) cases were investigated during stationary conditions. Time-averaged

velocity profiles were collected along the centerline for all cases. Velocity histo-

ries of nonaveraged data were also collected in order to identify non phase-locked

phenomena.

The Base Case 10, was selected for phase-averaged profiles along the centerline.

Case 10 also corresponds to the single case investigated by the direct numerical

simulation of Pauley, et al. (1988). For this case, the DNS was able to generate a

comprehensive dataset unachievable in this experiment. The strength of the exper-

iment over the DNS, however, was that the experiment covered a larger parameter

space albeit less thoroughly.

5.1.2 Measurement stations

Seven streamwise stations along the tunnel centerline were chosen for the acquisi-

tion of most data. These stations are shown with relation to the tunnel , - -netry

and Case 10, quasi-steady, separation structure in figure 5.2. Six of these sta-

tions correspond to the coordinates where Pauley, et al. (1988) reported results

and are labeled LP:u accordingly. The sixth station, LP:3 is approximately the

location of the mean reattachment node of the Case 10, quasi-steady separation.

Measurements at the seventh station LP:4 reveal effects downstream of this node.

Phase-averaged velocity profiles at these stations were composed of 28 y-points and

512 phases, at 0.04s intervals, for dense data in the y-spatial and time dimensions.

5.1.3 Selection of Scales

In order to apply the results of this experiment to real world technical flows, the

results need to be non-dimensionalized appropriately. Scales for velocity, length,

and time were needed. The velocity scale is the upstream velocity UO. Two length

scales were chosen:

1. the y-depth of the channel, H, because it provides direct comparison with

Paulev, et al. (198S).
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2. the momentum thickness, OOP.G" at uniform freestream (approximately zero

pressure gradient) conditions. There is one exception where the displacement

thickness, S*pG is used, but this is essentially equivalent to length scale (2)

multiplied by 2.6.

The momentum thickness, 0, is a particuli'ly apt length scale for separated

flows. It is a robust length parameter because it is nearly constant near the point

of separation. Furthermore, most integral-approximation methods for boundary

layers rely on the momentum thickness.

Three time scales are used:

1. tH = H/Uo,

2. t O = OOP.G./UO, and

3. Tc = LsIUo. The first two time scales are derived from the ratio of UO to each

length scale. The third, the convective time, Tc, is defined to be the period

of time required for the freestream to travel the length of the separation, LS .

Time-averaged data suggested that for the base case 10, LS :-. 0.17 ± 0.02m

from the separation saddle point to the mean reattachment node, so that

Tc z 0.8s. Since H = 0.129m, the scale t H is approximately 3/4Tc.

5.2 Facility Validation

Stationary inlet and boundary conditions in the facility are documented from

time-averaged velocity measurements. Inlet and boundary conditions during non-

stationary forcing are documented from non-averaged and phase-averaged velocity

measurements.

5.2.1 Stationary, uniform freestream

The uniform-velocity freestream (essentially zero pressure gradient) was set and

confirmed through streamwise velocity profiles collected as the LDA was traversed

along the tunnel axis (a-direction). To achieve streamwise uniformity, the inlet

vclocity UO = 0.214m/s for case 1Z, was selected and the manual control-wall
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valves trimmed until the velocity at all streamwise stations fell within ±O.02UO.

For the other inlet-velocity cases, a RD-valve at the exit was repositioned to change

UO, but the remaining control-wall valves were not adjusted. Figure 5.3 shows

the development of freestream velocity along the centerline for the different inlet-

velocity cases. For each case, table 5.3 confirms that freestream velocity is uniform

within ±2%, which is the error bound for u-velocity.

A second, independent method verified streamwise uniformity for the case 1Z.

Forty-point velocity profiles were collected along the centerline and integral bound-

ary-layer parameters computed. The growth of integral boundary-layer parameters

were compared against laminar theory, table 5.2 and figure 5.4. The momentum

thickness of the Blasius boundary layer grows in the test section at the rate pre-

dicted by theory, within ±12%, given a virtual leading edge, XIe = -4.2m.

A negative value for XIe implies that the boundary-layer is more developed

than would normally be expected for the z-chord location. The negative value

was anticipated due to the backward-facing step at the junction between the lead-

ing-edge assembly and the test surface. The two-dimensional separation bubble

which formed at this junction accelerated the growth of the laminar boundary-

layer thicknesses. Consequently, slightly amplified values for integral parameters

were calculated for boundary-layer profiles downstieam.

The LDA was traversed in the spanwise direction to confirm the spanwise uni-

formity of the freestream. A plot of the streamwise u-velocity across the span,

figure 5.5a, shows that the freestream velocity is uniform within ±0.02U0 . Span-

wise profiles within the boundary layer, figure 5.5a, also reveal a waviness which

result from upstream conditions characteristic to this facility. The waviness was

.enacious and repeatable. Several attempts were made to alter the spanwise wavi-

ness by cleaning the honeycomb and the screens, but to no avail.

Boundary-layer profiles were .acted at different points across the span to con-

firm spanwise uniformity. The integral parameters of these profiles were evaluated

also verified that the momentum thickness of the incoming test boundary layer

was uniform to within ±???%.
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No attempt was made to vaidate pressure-gradient conditions by pressure mea-

surements. Pressures were not measured chiefly because static pressures cannot

be resolved satisfactorily at such low flow velocities. Appendix B gives additional

reasons for avoiding the measurement of pressure in this facility.

5.2.2 Stationary, adverse freestrearn-velocity gradients

Figure 5.5b shows three spanwise profiles of u-velocity during adverse velocity-

gradient conditions. For one of the profiles the LDA measuring volume traversed

across the freestream. The measuring volume passed through the quiescent part

of the separation structure for the other two profiles. The freestream is uniform

across the span to within ±0.02U0 . Velocities inside the separation are symmetrical

about the centerline.

Potential-flow analysis exposes a conspicuous consistency figure throughout the

parameter space, (UO, S), see table 5.1b. Although the maximum, streamwise

pressure gradient, OCp/,x, varies threefold across the parameter space, the ratio

of the maximum spanwise to maximum streamwise pressure gradient fal]s in the

range of 9.1% to 10.6%. The spanwise pressure gradient accelerates the freestream

flow towards the center of the span.

5.2.3 Validation of the nonstationary freestream

Effects of the nonstationary forcing of the freestream were confined to tunnel flow

downstream of measurement station LP:A. Figure 5.6 shows the u-velocity free-

stream response vs. time at three streamwise locations along the centerline of the

tunnel. Freestream flow remained uniform and constant at station LP:A. Hence,

significant influence of the nonstationary, adverse pressure gradient was confined

to downstream of x _ 0.55m. A distinct square wave is measured at stations LP:D

and LP:4. Figure 4.4 shows that at the intermediate station LP:1, the freestream

waveform takes noticeably non-square waveform. Figures 5.7 graphically depicts

of the freestream gradient vs. time at all centerline measurement stations to give

a view of the time-varying freestream gradient.
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5.3 Stationary, three-dimensional separation

Stationary, three-dimensional separation was investigated by flow visualization

and by time-averaged sampling for all cases listed in table 5.1b. The literature

commonly refers to such a time-averaged perspective of flow separation subject to

stationary conditions as "steady" separation. Flow visualization revealed that the

structure of the separation generated in this tunnel was an Owl-face of the first

kind, according to the classification scheme proposed by Perry and Hornung (1984).

Flow visualization also revealed two distinctly unsteady features of the steady

separation structure. The most noticeable feature was the periodic roll-up and

shedding of vorticity from the detached shear layer. The period of the oscilla-

tion during roll-up, roughly 0.7Tc, will be discussed and quantified more exactly

in section 6.3. The second feature was a slowly varying asymmetry of the sepa-

rated structure. Recall that Perry and Hornung (1984) asserted that symmetrical

structures were unstable in three-dimensional separation. This investigation noted

that a nearly symmetrical Owl-face structure would typically persist for about

50 Tc after forming before becoming noticeably asymmetrical. The asymmetrical

separation would flop from side-to-side with a highly irregular period, sometimes

dwelling for several minutes on a side. A definitive period for flopping was never

established.

Due to the inherent unsteadiness, time-averaged velocity profiles of the station-

ary, 3-D separation were collected carefully. The duration of each time-average,

100s (or about 130 Tc), was chosen in order to average out greater than 150

periodic-shedding events, but was admittedly inadequate to cancel out effects of

asymmetrical unsteadiness. This duration was a compromise made in order to

avoid waste of laboratory run time while keeping errors below 5%.

5.3.1 Integral parameters for "steady" separation

Integral parameters were calculated from centerline, velocity profiles for all velocity

and suction cases. Figure 5.8 shows boundary-layer growth for the stationary base-

case 10. Table 5.4 lists integral and derivative boundary-layer parameters for all
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cases of upstream velocity and suction. The table shows the streamwise growth of

integral parameters case by case.

Qualitatively, the table of integral parameters indicates that the centerline of a

time-averaged, three-dimensional separation can be divided into 5 zones. Zone 1,

upstream of separation, sees a small increase in the displacement and momentum

thicknesses. In zone 2, the quiescent region of the separation, the displacement

thickness increases monotonically with z-location whereas the momentum thick-

ness remains uniform. Near zone 3, where the shear layer begins to roll up, the

momentum thickness decreases suddenly to near zero. Shedding of vorticity is most

distinguishable at zone 4; correspondingly there is a dramatic increase in momen-

tum thickness with z, while the displacement thickness hardly increases. Zone 5

and further downstream undergoes a decrease in the displacement thickness and

momentum thickness as the shear layer re-establishes itself into a turbulent bound-

ary layer.

5.4 Summary

This chapter has described the experimental plan fcr this investigation. Nine-

teen adverse velocity-gradient cases in addition to four uniform velocity cases com-

pose the parameter space. A square-wave forcing dissociates fast responses of the

boundary layer from slow responses. Upstream flow was held constant during

nonstationary as well as stationary tunnel conditions.

Data acquisition focused primarily on flow near the centerline of the tunnel

and consequently the centerline of the separation structure. Time-averaged and

raw, non-averaged velocity data of the u- and v-components were collected during

stationary boundary conditions. Streamwise and spanwise uniformity of the tunnel

flow were validated for uniform flow conditions. Spanwise symmetry of tunnel flow

was also shown for one adverse velocity-gradient case.
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The growth of integral boundary-layer parameters along the centerline of the

"steady", 3-D separation was presented. The displacement thickness grows mono-

tonically until downstream of the separation structure. The momentum thickness,

however, demonstrates much a more varied growth pattern depending on the zone

of the separation. The momentum thickness remained unchanged through the

quiescent zone of the separation, decreased significantly as the boundary layer ap-

proached the shedding zone, and then grew dramatically until a turbulent bound-

ary layer was re-established.

61



Roy W. Henk 7/16/90 9:14am

Chapter 6

Unsteady, Three-dimensional Separation

6.1 Introducion

This chapter presents the observations and analysis of the phase-averaged and

non-averaged velocity fields that were acquired in the course of this investigation.

Section 6.2 looks at the history of separation development for the base case 10

through phase-averaged velocity profiles in a variety of formats to identify the

stages of development. Section 6.3 presents the single most significant contribution

from this investigation: that a Strouhal number collapses the frequency of the

periodic shedding of vorticity across the parameter space. Section 6.4 identifies the

stages of separation decay. Section 6.6 reveals some interesting behavior from the

analysis of instantaneous boundary-layer integral parameters. Section 6.5 draws

some comparisons and contrasts with the results of Pauley, et al. (1988). Finally,

section 6.7 documents a classic, downstream-moving "MRS separation," which has

been long sought by proponents of the MRS condition.

Several basic observations were made from the experiment. When an adverse

freestream-velocity gradient was impulsively applied and sustained, a three-dimen-

sional separation evolved through four stages until it reached a quasi-steady state.

The quasi-steady state flowfield embodied a complex, unsteady, vortical structure

known as an Owl-face of the first kind, cf. figure 6.1 with figures 2.5 and 2.8.

Vorticity shed periodically from the detached shear layer. When the adverse-

pressure gradient was impulsively released, the separation decayed through four

stages until a two-dimensional, zero pressure-gradient profile was re-established.

This chapter describes the history of a developing and decaying separation for

the base case 10 primarily along the centerline of the separation structure. The

phase-averaged velocity database collected in the course of this experiment has

been essential for discerning L , zones of the structure and the stages of separation
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evolution. The presence or absence of particular events during the development

and decay of separation are used to distinguish the various zones of the separation

structure.

Figure 6.2, a schematic of the quasi-steady separation structure, is useful for

the ensuing discussion of the history of separation at various zones. Zone I ex-

periences quiescent, forward, laminar flow at all times. Zone II predominantly

experiences quiescent laminar flow, but flow becomes reversed during application

of the adverse freestream-velocity gradient and the shear layer detaches from the

surface. Zone III sees strongly reversed flow during the first two stages of separa-

tion development, which becomes transitory, reversed flow with transition during

the latter two stages. Zone IV experiences forward, turbulent flow during the

latter two stages of separation development. Zone V is outside the principal sep-

aration structure. Fresh fluid from zone V continually feeds into Zones II and III,

which make up the separation wake. Measurement stations, with respect to tunnel

geometry and the three-dimensional separation, were shown in figure 5.2.

To aid analysis, time- and phase-averaged results have been be shown in a variety

of formats. All plots were made using linear joins rather than with cubic fits, except

where otherwise noted. This choice was made because cubic spine plots, although

attractively smooth, hid the true resolution of data and occasionally added spurious

wiggles. A linear join, in contrast, exposed how well or poorly data was resolved in

space and time. When time constitutes one axis of a plot, a non-dimensionalized
t* = t/ H ,_ (4/3)tl/Tc is used. For the base case 10, t* = t . 1.66s - 1

6.2 Separation development

When the adverse freestream-velocity gradient was impulsively applied and sus-

tained, the developing three-dimensional separation evolved through four distinct

stages:

1. the sudden inviscid response,

2. breakaway of the shear layer,
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3. initiation of large-scale unsteadiness, and finally

4. the quasi-steady state. The duration of each stage can be seen in a plot of

the velocity histories at various measurement stations along the centerline,

figures 6.3a-d. For example, figure 6.3a shows that at LP:1, the sudden

inviscid response lasts from t* = 0 until approximately t* = 0.53; breakaway

of the shear layer lasts from t* = 0.53 until approximately t* = 7.5; initiation

of large-scale unsteadiness lasts from t* = 7.5 until approximately t* = 11;

and quasi-steady state begins at about t* = 11. In the following paragraphs,

important features of each stage will be described more thoroughy.

Sudden inviscid response (Stage 1). Flow through the entire tunnel responded

suddenly when suction was impulsively applied. During this stage, near-wall fluid

responded first and reversed flow was detected. The remainder of the tunnel flow

rapidly adjusted to the new boundary conditions. The flowfield at the end of this

stage can be modeled by taking the base case of a Blasius boundary layer and

superimposing the potential flow correction, with an allowance made for no slip at

the wall. Since there is reversed flow, a zero shear-stress point must appear and

therefore, according to the working definition, separation exists.

Although there is reversed flow at the wall during this stage, significant v-

velocities near the wall have not vet appeared. By all appearances the wall-

bounded shear layer is still attached. This is the reason that MRS proponents

were unwilling to designate the term "separation" for this transient condition.

Significant v-velocities will appear during the the breakaway of the shear layer in

the next stage.

Breakaway of shear layer (Stage 2). Since the tunnel flow has now matched the

new newly-imposed adverse-pressure gradient via the sudden inviscid response,

the subsequent breakaway of the shear layer from the surface is part of the viscous

response. For example, figure 6.3a shows that this stage begins at approximately

t* = 0.53 and lasts until t* - 7.5 at station LP:1.
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The process that takes place during this stage is the displacement of the wall-

bounded shear layer at zone II away from the surface as fluid from zones III and IV

is convected underneath the shear layer. The fluid sandwiched by the shear layer

and the test surface is the separation wake. Figures 6.4a-c show the translation of

the shear layer through instantaneous, phase-averaged velocity profiles at several

phases; experimental results are shown alongside the results of Paulev, et al. (1988).

Figures 6.5a-c and 6.6a-c, which display the evolution of the phase-mean (u)- and

(v)-velocity profiles, show the smooth departure of the shear layer away from the

surface for 0.53 < t* < 7.5.

Throughout this stage of development, the entire flow is remarkably quies-

cent. Figures 6.7a-c, 6.8a-c, and 6.9a-c, which display the evolution of the phase-

fluctuating (u'u')-, (v'v')-, and (u'v')-profiles, show practically zero fluctuations

(at the level of instrument noise) for 1* < 7.5. Note: At stations LP:B and LP:D,

the double-product profiles were practically zero throughout the period of the

waveform, which confirms that zones I and 2 contained quiescent laminar flow.

Inception of large-scale unsteadiness (Stage 3). At the onset of large-scale un-

steadiness, the detached shear layer rolls up and sheds in a dramatic and vigorous

fashion, signaling the next stage of separation development. This stage is visible in

figures 6.3a-e by the large velocity oscillations during the time period 7.5 < t* < 11.

The first second and third cycles of this unsteadiness at LP:1, figure 6.3a, dwarf

all other cycles.

The passage of spanwise vortices that have shed from the shear layer are re-

sponsible for the large-scale unsteadiness. Note that the (u)-velocity oscillations

of near-wall datapoints, i.e. y/H < 0.040, are approximately 1800 out-of-phase

with those of outer datapoints, signaling the passage of spanwise vortices. Further-

more, the (v)-velocity oscillations are approximately 900 or 2700 out-of-phase with

(u)-velocity oscillations; compare figure 6.3e with figure 6.3b. Vector plots of the

two velocity components at two measurement stations and two instances in time,

figures 6.10a-b, show fluid being thrust out from the wall and towards the wail,
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respectively. The corresponding (u)-velocity profiles, also shown in figures 6.10a-b,

can become quite corrugated and reveal steep velocity gradients.

This stage begins when the shear-layer instability catches up with the viscous

response of stage 2. The phase-mean velocity profiles, figures 6.5b-f and 6.6b-f,

alter dramatically and undergo vigorous oscillations during this stage. Concur-

rently, the double-product (u'u')-, (v'v')-, and (u'v')-profiles, figures 6.7a-c, 6 .8a-c,

and 6.9a-c, change explosively. By t* _ 11, large-scale unsteadiness in figures 6.5b-f

and 6.6b-f appears to settle down.

Arrival at quasi-steady state (Stage 4). Quasi-steady state arrives at t* ; 11 and

lasts until the end of the cycle, when the adverse freestream-velocity gradient is

impulsively released. During this stage, phase-mean (u)- and (v)-velocity profiles,

shown in figures 6.5a-f and 6.6a-f, each exhibit an almost unchanging profile over

time.

A comparison can be made between the quasi-steady state attained during the

forced, nonstationary conditions and the time-averaged, "steady," three-dimen-

sional separation shown in figure 5.8. Figure 6.11 shows velocity profiles along

the centerline of the tunnel during the quasi-steady state of the nonstationary

separation. Each of the velocity profiles in this figure is pseudo-" time-averaged"

or "phase-smoothed" by averaging twenty consecutive, phase-mean profiles during

15.8 < t* < 16.7. The integral boundary-layer parameters, also shown on both

plots, also compare well.

The plot of phase-averaged data, figure 6.11, shows a separation that is slightly

larger and smoother than the time-averaged plot. The most probable reason is the

inherent unsteadiness of the separation structure that is suppressed by nonstation-

ary forcing (for the phase-averaged results) causes irregularities in the time-aver-

aged results. For examplr., stationary boundary conditions during the collection

of time-averaged profiles permitted a slow asymmetric meander of the separation

about the centerline. Such behavior was expected since the symmetrical structure
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is topologically unstable (Tobak and Peake, 1982). Evidence from flow visualiza-

tion confirmed that the separation was unsteady and would waver spanwise about

the xy-centerplane of symmetry for a stationary adverse freestream-velocity gra-

dient. In contrast, nonstationary forcing used while phase-averaging released the

adverse freestream-velocity gradient before the same slow meander became signif-

icant.

Although the phase-mean profiles in figures 6.5c-f and 6.6c-f appear steady dur-

ing quasi-steady state, they conceal a perpetual unsteadiness in the steady-state

structure of three-dimensional separation. Unsteadiness was principally character-

ized by continual periodic shedding of the detached shear layer. An in-depth look

at the double-product profiles will shed a little more light on this unsteadiness.

Effects of periodic shedding on the structure of separation. Details of how the

unsteadiness affects the structure of separation during quasi-steady state are bet-

ter understood by considering profile histories of double-product terms. Double-

product profiles indicate that in the quiescent zone II, the detached shear layer

gently flaps normal to the wall. Further downstream in zone III, the flapping

shear layer rolls up into locally spanwise vortices. These vortices shed and pass

downstream, vigorously agitating flow near the wall.

To verify that the detached shear layer flaps at LP:1, consider figure 6.7a. After

t* - 11, the broad (u'u')-profile at LP:1 has collapsed to a narrow peak. The

narrow peak could be indicative of flapping of the shear layer in the y-direction, of

regular vortex roll-up, or of some other unsteady phenomenon. The relative flatness

of (v'v')- and (uYv')-profile plots (figures 6.Sa and 6.9a, respectively) convince us of

the first explanation. For example, were vortex roll-up the dominant mechanism

at LP:1, then the (vYv')-profiles should show a peak similar to (Ulu') during the

quasi-steady state. Instead, flapping of the shear layer at this location resulted in

the observed peak in (u'u')-profiles and in flat (vlv'- and (u'v')-profiles.

In contrast, at the downstream location LP:2, the broad peak in the (u'u')-

profile persists throughout the quasi-steady state. This broad peak also appears
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in (v'v') and (u'v') profiles. The consistent peak throughout the double product

profiles confirms that at this streamwise location, vigorous activity in the z- and

y-directions trades high-velocity fluid in the outer flow with low-velocity fluid that

was near the wall. In other words, spanwise vortices pass through streamwise

location LP:2. Results from flow visualization had also suggested that the flapping

shear layer near LP:1 began to roll up and shed well-defined vortices through LP:2.

Since the shed vortices appeared to thrust fluid up into the quiescent zone II, there

is probably feedback between the flapping shear layer and the shed vortices.

The technique of phase-averaging this forced, nonstationary flow obscured some

of the observable flow physics, such as the periodic shedding mentioned above.

This problem was most troublesome for non phase-locked time responses. Sec-

tion will show that the acceleration of shed vorticity during separation decay

was also obscured. Unsteady behavior at these stages in the evolution of separa-

tion were studied and quantified via non-averaged data collected during stationary

conditions or via single realizations of the nonstationary event.

6.3 Strouhal number of shed vorticity

One of the salient features of three-dimensional separation is the inherent un-

steadiness of the free shear layer. The instability of the free shear layer caused vor-

ticity to roll-up and shed at a characteristic frequency during quasi-steady state.

Details of this process were gleaned through the analysis of non-averaged data.

The frequency of shedding was determined for each Uo-Suction case in the

parameter space. St. tionary adverse freestream-velocity gradient conditions were

set in order to obtain an adequate number of samples to confidently resolve the

shedding frequency. A power-spectra algorithm (Press, et al., 1988), implemented

an overlapping Parzen window to obtain the smallest error from the fixed number

of sampled data points, during the post-processing of non-averaged data.

The Strouhal number of the shedding frequency f was defined

St = f °°

U0
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where UO is the upstream velocity and 00 is the corresponding momentum thickness

during uniform, freestream-velocity gradient conditions. The Strouhal number

St = 0.011 ± 0.001 collapses all cases in the parameter space for which a dominant

frequency was detected. Figure 6.12a indicates that for a single upstream velocity,

U0 , the Strouhal number of shedding frequency, St = 0.011 ±0.001, is independent

of the freestream velocity gradient for cases 00 to 04. Figure 6.12b shows that St =

0.011 ±0.001 also holds for cases 10 to 14. Figure 6.12c confirms St = 0.011 ±0.001

for cases 20 to 24. For case 34, St z 0.0116.

Cases 05, 15, and 25 did not demonstrate a dominant frequency. This indicates

that incipient shedding of vorticity from the separated shear layer occurred at

the adverse freestream-velocity gradient which corresponds to 7% suction through

the port in the control wall, see table 5.1. Incipient shedding may coincide with

incipient separation for these laminar cases because of the strong tie between un-

steadiness and three-dimensional separation indicated in the literature.

The value for St from the experiment contrasts with the value St = 0.0143 re-

ported by Pauley, et al. (1988). Communication with the authors indicated that

the DNS value was derived manually from the two oscillations shown in figure 6.13a

(figure 4. 2 3a of their report). The most likely source for the difference from the

experiment is that two oscillations from the computation do not constitute an ade-

quate sample. Furthermore, although these two oscillations may appear definitive

and regular, the subsequent oscillation differs markedly. Had a FFT been used to

determine the shedding frequency from the two DNS oscillations, the finest fre-

quency interval is about 0.5Hz which corresponds to a Strouhal number resolution

of ±0.002. In contrast, experimental results were obtained using a FFT Power

Spectrum from N oscillations, where 160 < N < 650, such that the frequency

resolution was 0.1Hz.

6.4 Separation decay
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When the adverse freestream-velocity gradient was impulsively released, the

separation decayed through four stages:

1. the sudden inviscid response,

2. return of vorticity back to the surface,

3. amplification of shed vorticity,

4. the zero pressure-gradient, Blasius boundary layer. Stage 3 occurred con-

currently with stage 2, but primarily affected only zone III. The separation

decayed more rapidiy than it had developed.

The duration of each stage can be seen in a plot of the velocity history at station

LP:2, figure 6.14. For example, the sudden inviscid response lasts from t* = 0 until

approximately t* = 0.53; return of vorticity to the surface lasts from t* = 0.53

until approximately t* = 10; acceleration of shed vorticity lasts from t* = 0.53

until approximately t* = 5; and zero pressure-gradient conditions are restored at

about t* = 10. In the following paragraphs, important features of each stage will

be described more thoroughly.

Sudden inviscid response (Stage 1). Flow through the entire tunnel responded

suddenly when suction was impulsively released. Reversed flow at the surface

disappeared soon after release of the adverse pressure gradient, that is, within

t* < 0.27. The remainder of the tunnel flow rapidly adjusted to the new boundary

conditions.

According to the working definition the separation technically vanished when

the saddle point (zero shear stress) disappeared during the first stage. The remnant

of separation wake experienced the later three stages. In contrast to our definition,

the MRS definition maintains that the separation instantly became a downstream-

moving separation. In any case, subsequent stages of the decay of three-dimen-

sional separation will be described and quantified.

Return of vorticity back to the surface (Stage 2). Under the new boundary con-

ditions, the separation wake, which displaces the shear layer from the surface, can
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not be sustained at its fixed location. Figure 6.15 shows the phase-averaged veloc-

ity profiles during this stage of separation decay. The vorticity of the shear layer

returns to the surface as the remnant of the separation wake is accelerated and

convected downstream.

At first, diffusion of vorticity was thought to be the dominating physics during

this stage of decay. Tests were therefore made to establish if this were true. Two

reasons indicate that the diffusion of vorticity, although present, was not the most

significant factor. The first reason arises from an analysis by Watson (1958) that is

akin to Stokes first problem: the suddenly accelerated plate. His analysis suggests

a time scale, tson = 99/16v, for the influence of the new boundary conditions

to reach the edge of the boundary layer. This ti ne scale exceeds the time ob-

served for the Blasius profile to be completely restored by a factor of at least four.

The second reason, discovered by a simple analysis, is easily shown heuristically.

Consider again figure 6.15. The maximum velocity gradient, Ou/ay, is essentially

constant during this stage. Had diffusion of vorticity been the dominant process,

the gradient Ou/ay should have diminished.

Instead, the separation wake is pushed downstream and the vorticity pushed

towards the surface by a slightly favorable pressure gradient 6 that also accelerates

the freestream. Acceleration of the freestream to a velocity greater than UO during

this stage can be seen in figure 6.16. The source of the slight acceleration of the

freestream is the blockage caused by the lingering presence of the separation wake.

Concurrent with the return of vorticity back to the surface, but downstream in

zone III, a much more vigorous process occurred.

Acceleration/amplification of shed vortices (Stage 3). By the end of stage 1, shear

laver vorticity that had begun to roll up now finds itself embedded in a noticeably

faster flowfield. The velocity of the local freestream flow. U , first exceeds U0 and

then settles down it, in accordance with the blockage-induced acceleration that

was mentioned in the concurrent stage 2. The shed vortices, therefore, accelerate

6 The effect is analogous to shooting a watermelon seed by squeezing it between your fingers.

71



Roy W. Henk 7/16/90 9:14am

and amplify as they are convected over the separation wake. The new frequency

at which shed vortices pass downstream measuring stations is related to the quasi-

steady state shedding frequency by approximately the ratio Uo/U,,, where U', is

the local Uo during quasi-steady state. It appeared that four or five vortices were

passed during this stage.

This whole process was obscured by phase-averaging the velocity data in fig-

ure 6.14 because the passage of these vortices is not phase-locked with the impulsive

release of suction. This process is most easily identified in plots of non-averaged

raw data of single realizations as in figure 6.17.

Return to a Blasius boundary layer (Stage 4). The Blasius boundary layer is

completely re-established by t* > 10.

6.5 Comparison with Direct Numerical Simulation

The simple geometry and known initial conditions and boundary conditions in

this experiment facilitated comparison with a direct numerical simulation (DNS).

Thus as a companion to this experiment, Pauley, et al. (1988) undertook a com-

putational study of the developing and decaying three-dimensional separation for

conditions largely the same as base case 10. Since the DNS generated far more

comprehensive quantitative results for this case, Pauley, et al. (1988) ought to be

referred to for details of the global velocity and pressure fields.

A few differences between the experiment and the DNS need to be mentioned.

First, it is important to remember that the experimental results are phase-av-

eraged whereas the DNS results come from a single realization. Secondly, the

DNS boundary conditions for the sides of the tunnel were set as follows: no-

slip conditions on the test surface, periodic conditions on the side walls, and slip

conditions on the control wall; the experiment had no-slip conditions everywhere.

Finally, in the experiment the adverse freestream-velocity gradient was also

sustained for 40% longer than it was in the DNS. There are three reasons for this.

First, since results from the DNS arrived first and it appeared that the separation
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was fully developed by t* = 12, it was hard to justify spending any more CRAY®

time on the DNS. Secondly, in order to determine when the experimental separation

was fully developed, several cycle periods were examined; from this examination

a period of "suction on" for t* = 17 was selected as adequate for an unchanging

quasi-steady state. Thirdly, a period of "suction off" for t* = 17 was selected

because the Blasius boundary layer could re-establish itself throughout the test

section at this period and because symmetrical waveforms were preprogrammed in

the valve controller.

Figures 6.4, 6.15, and 6.13 present the results of the experiment alongside those

of Pauley, et al. (1988). Figures 6.4a-c and 6.15a-b show the results on the experi-

ment alongside those of the DNS during the second stage of separation development

and decay, respectively. There appears to be excellent agreement between both

investigations during these stages. Figures 6.13a-b show a plot from the DNS

alongside a version of figure 6.3a that has been re-scaled for direct comparison.

Although the results agree well for the time periods for t* < 7.5 and for t* > 10,

they differ significantly during the intervening stage of large-scale unsteadiness.

The difference may be due to the influence of side-wall boundary layers in the

experiment; the DNS instead used periodic boundary conditions on the side walls.

Finally, to recap the result from section 6.3, the experiment found that the

shedding frequency for stationary three-dimensional separation satisfied St = (f.

O0)/U 0 _ 0.011±0.001 across the parameter space for which shedding was detected.

This value contrasts with the value of St = 0.0143 reported by Pauley, et al. (1988).

6.6 Integral Parameters in the unsteady, separated boundary layer

Figures 6.18 and 6.19 show the histories of the instantaneous integral parameters

for the developing separation. Likewise figures 6.20 and 6.21 show the histories of

the instantaneous integral parameters for the decaying separation. These histories

have been normalized to the local value for the phase-averaged, uniform-freestream,
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velocity profile. No comparison of integral boundary-layer parameters was made

with the DNS results because none were reported by Pauley, et al. (1988).

Instantaneous values of boundary-layer integral parameters exhibited some un-

usual behavior during development of the three-dimensional separation. For exam-

ple, the displacement thickness 6*, shown in figure 6.18, grew dramatically and at

times exceeded the 699 thickness of the boundary layer. In addition, the momen-

tum thickness 0, shown in figure 6.19, became negative at times. The associated

estimates of the local Uoo are shown in figure 6.22. Corresponding to the zero

crossings of the momentum thickness, the shape factor, H, became infinite and

changed sign, yielding not very useful information. Instead, the more useful rela-

tion h = (H - 1)/H, given in equation 4.5, is plotted vs. 61699 in figure 6.23.

Figure 6.23 shows that the time variation of h deviates erratically from the corre-

lations during stage 3 of separation development at LP:1.

The key to the explanation of these unusual occurrences is a strong upwash

of reversed flow inside the boundary layer; a local, downstream-moving, spanwise

vortex is one possible culprit. The upwash creates a steep velocity gradient in the

boundary layer (e.g. figure 6.10b): between the steep gradient and the wall flow is

reversed, i.e. (u) < 0; outside of the steep gradient, flow is nearly at the freestream

value (and may even exceed (Uoo). This combination can easily be shown to result

in 0 < 0 and 6* > b99.

Although uncommon, these results are not new. Simpson (1985) had reported

negative momentum thicknesses in a nonstationary turbulent separation.

Integral parameters for the decaying separation, figures 6.20 and 6.21, exhibited

much milder behavior which may be due to the absence of phase-locked unsteadi-

ness.

6.7 The decay of separation and the MRS condition

Recall that due to the sudden absence of reverse flow after stage 1 of separa-

tion decay, the saddle point disappears and separation vanishes according to the
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working definition. The remnant of sluggish fluid that constituted the separation

wake now evolves into a velocity profile which indisputably matches the classical

rendering of a downstream-moving "MRS separation" shown in figure 2.3. The

velocity of the MRS separation increases from 0 to 0.2Uo in the interval from the

release of the adverse pressure gradient until t* - 3.

Few downstream-moving "MRS separations" have been documented besides this

one. Smith and Kline (1971) visualized such a flow in a diffuser undergoing tran-

sitory stall. Lidden and Ho (1985) documented an interesting relative in the flow

associated with a wall-jet vortex.

6.8 Summary

This chapter has described this investigation's observations and analysis into

forced, nonstationary, three-dimensional separation. Flow conditions for the base

case 10 (see section 5.1) have been examined most thoroughly. Freestream velocity-

gradient conditions were changed impulsively in order to distinguish between fast

and slow responses of the boundary layer. The developing separation undergoes

four stages as it evolves into a quasi-steady state separation. The quasi-steady

state separation is characterized by inherent unsteadiness, primarily arising from

periodic shedding of the detached shear layer. The frequency of shedding across

the parameter space collapsed to a Strouhal number, St = 0.011. Integral bound-

ary-layer parameters exhibited unusual behavior during separation development.

Specific conclusions are listed in the next and final chapter.

Results from this experiment largely agree with the results of the companion

direct numerical simulation by Pauley, et al. (1988). Certain differences may be due

to slightly different boundary conditions between the investigations. Both efforts

have been are early efforts at documenting and quantifying the unsteady flowfield

of a nonstationary, three-dimensional separation. Together, these studies have

enhanced understanding of nonstationary, three-dimensional separation. Insights
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from these programs should assist the modeling of these complex flowfields which

are observed throughout nature and technology.
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Chaoter 7

Conclusions

This experimental study has made several contributions to the fledgling field of

unsteady, three-dimensional flow separation. In general, its primary contribution

has been to broaden our understanding of the time behavior of these flows.

Specific accomplishments:

" The rig has been successfully modified for the study of simple and complex,

steady and unsteady, two- and three-dimensional flows. The durability, optical

access, modularity, and flexibility of the test section were all improved. The

facility successfully survived the 7.0 Loma Priete quake at 5:04p.m. on 17

October 1989.

* Inexpensive, compact, fast, high-capacity valves were designed for computer-

control of stationary and nonstationary freestream velocity fields. Linearity of

the valve's characteristics facilitated implementation of desired waveforms for

freestream forcing.

" A definition for laminar separation that applies to two- and three-dimensional,

stationary and nonstationary separation has been proposed. The definition of

"separation" or "separation region" is a flow structure that consists of a

separation line and a separation wake. A "separation line", shown in figure 2.1,

is the line that passes through a saddle point on a solid surface. Therefore,

there must be a point where 7, = 0 (or Cf = 0) for separation to exist. In

order to distinguish from attachment, flow near the saddle point moves away

from the wall. The reference frame for this definition is the surface of the solid

body. Sluggish fluid downstream of a separation Lne is a "separation wake".

Conclusions:
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1. The above definition of "separation", akin to the original description by

Prandtl, is consistent for stationary and nonstationary, two- and three-di-

mensional separated flows. This definition is closely aligned with Legendre's

and is not far removed from Tobak and Peake's. This definition can be easily

amended to include stationary, turbulent separation. Controv sies that have

arisen over alternative definitions presented in the literature have been re-

solved because various authors have merely emphasized identical phenomena

to differing degrees.

2. When an adverse pressure gradient was impulsively applied and sustained, a

three-dimensional separation developed until it reached a quasi-steady state.

This separated flowfield embodies a complex, unsteady, vortical structure

known as an owl-face of the first kind. When the adverse pressure gradient

was impulsively released, the separation decayed until a two-dimensional,

zero pressure-gradient profile was restored.

3. The evolution of a three-dimensional separation as it developed or decayed

could be divided into four stages. Some zones of the flow structure experi-

enced all of the stages as the separation evolved under impulsively-imposed

adverse pressure-gradient conditions.

4. The four stages during separation development are: (i) the sudden inviscid

response, (ii) breakaway of the shear layer, (iii) inception of large-scale un-

steadiness, and finally (iv) the quasi-steady state. For base case conditions,

a quasi-steady separation will have been established by t* > 7.5.

5. The Strouhal number for shedding of vorticity from the quasi-steady owl-

face structure is given by the formula, St = f. Oo1U 0 = 0.011 ± 0.001. This

conflicts with the conclusions of Pauley, et al. (1988).

6. Distinctive frequencies for vorticity shed from 3-D separation were detected

for suction strengths down to about 7%. This is considerably less than the

value of 12% for 2-D separation as determined by Pauley, et al. (1988).
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7. The four stages of separation decay are: (i) the sudden inviscid response,

(ii) return of vorticity back to the surface, concurrent with (iii) amplification

of shed Narticity, and (iv) the Blasius boundary layer. According to our

definition the separation technically vanished when the point of zero shear

stress disappeared during the first stage. Only the unsteady zone of the

separation wake experienced stage (iii). The separation wake decayed more

rapidly than the separation had developed.

8. The decay of the separation wake is equivalent to a "downstream-moving

separation" as defined by proponents of the MRS condition. Taking the view

of the MRS condition, separation decay is the process in which sluggish fluid

within the separation is continually sheared until a Blasius profile is attained.

9. This experiment documented a classic, downstream-moving MRS separation

profile and its associated velocity. The MRS velocity of the downstream-

moving separation increased from 0 to 0.2U0 during the interval 0 < t* < 2

of separation decay.

10. Calculations of integral boundary-layer parameters were reasonably redefined

and calculated by asymptotic matching of the potential flow velocity profiles

with experimental data. It was observed at certain instances in the develop-

ing separation that the displacement thickness, 6, could exceed 699 and that

the momentum thickness, 0. could become negative. Such behavior for the in-

stantaneous values of displacement and momentum thicknesses are justifiable

and have been discussed in the literature.

11. Phase-averaging of the velocity fields of forced, unsteady flows causes some of

the observable physics to be obscured. This problem was most troublesome

for non phase-locked time responses. Consequently, during the stage of quasi-

steady separation, there was the appearance of steady separation, and during

separation decay the acceleration of shed vorticity was concealed. Unsteady

behavior at these stages in the evolution of separation were quantified via non-

averaged data collected from single realizations of the nonstationary event.
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12. This experiment underscores the conclusions that inviscid and convective

time scales dominate the separation process for this experiment. The in-

portance of convective terms has been ;nferred from 5e,,eral papers in the

literature.

13. The size of the separation was observed but not quantified. As suction in-

creased, the spanwise extent of separation increased. The length of the shear

layer from separation to roll-up appeared to remain constant.

Suggestions for future research:

" Develop a flow visualization technique to determine spanwise extent/size of

separation at different flow conditions.

" Repeat the experiment for different geometries of suction holes. Broaden range

of flow parameters, especially Re0 . Study multiple structures, like those seen

by Winkelmann.

" Determine a pressure-gradient criterion for (i) incipient three-dimensional sep-

aration and for (ii) the onset of shedding. Check if Pna = -0.24 for the onset

of shedding.

" Collect histograms of non phase-averaged data to evaluate velocity behavior

within the separated zone.

" Extract more information from the DNS by Pauley, et al. (1988). There is

considerable interest regarding the contours of Vma, and of integral parameters

for comparison with van Dommelen and Cowley (1990). The comprehensive

results from the DNS may verify or invalidate the assertions by van Dommelen

and Cowlev.

" Investigate if the growth of separation and the ejection of vorticity away from

the wall corresponds to the bursting process of a turbulent boundary layer.

" Examine tools from control-theory system identification to assess whether these

can be implemented to describe the time-behavior of separation.
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Appendix A

Glossary

Boundary-layer profile refers to a collection of velocities obtained by travers-

ing the LDA measuring volume only in the y-direction (normal).

Breakaway of a wall-bounded shear layer requires a significant component of

velocity normal to the surface. Advocates of the MRS condition contend that

breakaway equals separation and that the MRS condition identifies breakaway. Of

these, Van Dommelen and Cowley (1990) have convincingly identified the singu-

larity at breakaway.

One convective time, Tc, is the period of time required for the freestream flow

to travel the length of the separation, LS.

Direct Numerical Simulation (DNS) solves the time-dependent, three-di-

mensional, Navier-Stokes equations without the imposition of a model. The com-

prehensive, quantitative results generated by DNS show the evolution of al signif-

icant scales of motion.

Double-product terms for time-averaged data (see "fluctuating") are equal

to the variances of instantaneous velocity fluctuations about the time-mean value:

Ulu' is the variance of the mean u-velocity; U ' is the variance of v, and u'v' is the

cross-variance. For phase-averaged data (see "phase-fluctuation") the double-

product terms, (Ulu'), (v'v'), and (u'v'), assimilate cycle-to-cycle variations as

well as instantaneous fluctuations.

The displacement thickness, P*, is an integral boundary-layer parameter

related to the steady-flow, mass-conservation equation. It marks an equivalent

displacement of the potential freestream flow from a surface. The standard and

modified equations for * are given in section 4.3.
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Fluctuating is a catchall for random unsteadiness and or other effects which

were not identified as organized unsteadiness.

A focus, figure 2.1, is a node where the skin-friction lines spiral into or away

from the node. A "saddle point" is common to only two skin-friction lines.

An isolated line of convergence (LOC) is used to describe a pattern of

skin-friction lines, such as in figure 2.6, which converge to an asymptote without

the presence of a singular point. This pattern does not fit the working definition

of separation, which requires the presence of a saddle point.

Local Separation is the term for an "isolated line of convergence" used by

some researchers, e.g. Tobak and Peake (1982).

The momentum thickness, 0, is an integral boundary-layer parameter often

used for the correlation of data. It is an important element of the steady-flow,

momentum-integral equation of von KHrmin (see Schlichting, 1979).

MRS separation refers to the definition of separation according to the propo-

nents of the MRS condition. This term is equivalent to "breakaway," which is the

preferred for the sake of consistency in this paper.

Negative bifurcation is the terminology used by Hornung and Perry (1984) to

describe an "isolated line of convergence." Their schematic is shown in figure 2.7.

The term connotes that multiple lines become one. Topologically, this term is

misleading because converging skin-friction lines can only asymptote to the LOC.

A node, figure 2.1, is singular point common to an infinite number of skin-

friction lines.

Nonstationary will be used for time-variable initial and/or boundary condi-

tions.

Open Separation is the term for an "isolated line of convergence" used by

some researchers, e.g. Wang (1974).

Quasi-steady refers to an unsteady flowfield that has lost all phase coherence.
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Ordinary points have a nonzero wall shear stress and posses only a single

skin-friction line. All points which are not singular are ordinary points.

The phase-fluctuations (double product terms) (uu), (vv), and (uv) are the

two variances and the cross-variance corresponding to the "phase-mean" velocities.

The phase-mean velocities (u) and (v) are computed at each phase of the

forced waveform cycle by averaging many realizations of said cycle. Phase-averages

were accumulated from 200 realizations, where the cycle of each realization was

partitioned into 512 distinct phases.

Reversed flow occurs when a velocity vector has a component that opposes

the freestream velocity direction.

Revolving-Disc valve (RD-valve) is the type of computer-controlled valve

that was custom-designed for the Water Tunnel Facility. The characteristics and

operation of this valve is described in detail in section 3.3.

A saddle point is a singular point where the wall shear-stress vector field

(or equivalently the limiting streamlines at the wall) has the topology sh-'wn in

figure 2.1.

Separation is the flow structure consisting of a separation line and a separation

wake.

A laminar separation line is the line that passes through a saddle point.

Therefore, there must be a point where ,. = 0 (or Cf = 0) for separation to exist.

A separation wake is the sluggish fluid downstream of a separation line.

A singular point is a point where the wall shear stress, -7, equals zero. A

singular point can either be a "node" or a "saddle point", see figure 2.1.

Spanwise profile refers to a collection of velocities obtained by traversing the

LDA measuring volume only in the z-direction. Actually the y-direction was tra-

versed slightly during spanwise traverses. For these experiments, the LDA beams

approached the test surface at an angle of about 0.90. The LDA approach an-

gle was set to enable measurements very close to the surface. Consequently, if
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the measuring volume penetrated the boundary layer during a spanwise profile,

velocity corrections needed to be made.

Stationary will be used to refer to fixed initial and boundary conditions.

Steady means that the local flowfield does not vary with time.

Streamwise velocity profile refers to a collection of velocities obtained by

traversing the LDA measuring volume only in the i-direction. Since slight traverses

in both the y- and z-directions accompanied streamwise traverses, only measure-

ments of the freestream velocity were taken.

Two-dimensional (2-D) refers to flow that is two-dimensional in the mean so

that there are two non-zero velocity components that vary in only two spatial coor-

dinates. The main examples covered in this literature review deal with flat plates

or high aspect-ratio airfoils where end effects are neglected. Another example is

axisymmetrical flows. Literature indicates that many presumed "two-dimensional"

separated flows were truly three-dimensional in the mean.

Three-dimensional (3-D) refers to a flowfield that can be represented by not

less than three non-zero velocity components that vary in three spatial coordinates.

Unsteady will primarily refer to organized unsteadiness in the flowfield which

may arise from inherent instabilities under stationary conditions or may be a re-

sponse to nonstationary conditions.

Velocity-gradient conditions is the term used instead of pressure gradi-

ent conditions because the freestream velocity-gradient is controlled via suction

through the control wall. The pressure gradient is not controlled at all, although

it is modified by the freestream velocity gradient.

Velocity profile is identical to "boundary- layer profile" when not modified by

"spanwise" or "streamwise."
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Appendix B

Experimental Procedure

The procedures that will be described in this appendix were developed to

streamline changeover between the various experiments performed in the unsteady-

flow water tunnel. These procedures generally either exploit the advantages or at-

tempt to circumvent the problems associated with using water as the flow medium.

The two pre-eminent strengths of water facilities are (1) the assortment of flow

visualization techniques available to the experimentalist, and (2) the water is usu-

ally contaminated enough to not require seeding for LDA velocity measurement.

Before discussing flow visualization techniques used in this facility-the second

strength needs no further comment-this appendix will discuss procedures com-

mon to the setup and everyday operation of the Stanford unsteady boundary-layer

research water tunnel.

B.1 Selecting and Setting flow conditions/parameters

The Unsteady-Flow Boundary-layer Water Tunnel has been designed for careful

control of initial and boundary conditions experienced by the flow. The bypass-

bleed, side-wall, and opposite-wall boundary layer bleeds mentioned in chapter 3

control initial and boundary conditions. In addition, special subsystems for tem-

perature control and de-aerationb help control global flow conditions. This ap-

pendix details techniques for setting each of these subsystems.

Temperature control. The dedicated water chiller and temperature controller con-

fined held the temperature of tunnel water to ±0.10C throughout all experiments.

Failure of the former temperature-control system required that a new temper-

ature controller and water chiller be installed. The replacement chiller was a 5
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ton Carrier® 3SEH060 Compressor with a 09WQ060 Heat Exchanger. This sys-

tem more closely matched our standard load than the former 10 ton Trane® unit.

A hot-gas bypass system, added to the system, unloaded the chiller as demand

decreased.

The temperature controller, Omega® CN 9000, sensed the temperature in the

tunnel exit section via a RTD thermistor. The temperature controller operated

in PID mode for more intelligent control than the former thermostat. Detailed

instructions for setting the temperature controller are given in its manual. When

the thermal load decreased, the controller would switch a solenoid valve to divert

50% or more of the fluid from the heat exchanger through a bypass loop. Since

the hot-gas bypass has a long time constant, the chiller accomodated changes

smoothly; it did not deliver surges of over-cooled water or cause electrical power

surges.

Air purge/Drain down system. This system served two purposes, one to expedite

data-readiness of the tunnel and the second for quality control of all data runs.

As air purge, the system could force air trapped in low-veiocity, opposite- and

side-wall boundary-layer control assemblies into the test section where it could be

easily removed. The entire test section would then be free of air bubbles within

two hours. As drain down, the system would set the exit pressure for the same

opposite- and side-wall assemblies. The pipe provided an outlet for fluid withdrawn

through these assemblies. The pressure was set by one of the ports which vented

to atmospheric pressure. The pipe conveyed exhaust fluid directly to the surnp.

Caution: close the vent before using this system to purge air.

Setting the streamwise freestream-velocity gradient. Adjustment of the streamwise

freestream-velocity gradient of the water tunnel operating at stationary conditions

was first task in the setting of initial and boundary conditions for this experiment.

For the purpose of setting a streamwise uniform freestream velocity, a target ve-

locity was chosen. Opposite-wall valves were then adjusted to match this velocity

within ±1% as the LDA, measuring the potential core, was traversed upstream.
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The upstream direction is preferred because opposite-wall valves affected the up-

stream velocity considerably more than the downstream velocity. This can be

understood if we consider opening a valve halfway down the test section. Gage

pressure downstream, which is the driving force determining flowrate through a

fixed valve, increases little. The flow entering the test section, however, sees a

different open area and increases flow upstream of the "'."e accordingly. Direct

pressure measurements were not used for adjusting the pressure gradient as will

be explained below.

Test surfaces were not designed for implementation of pressure taps. One rea-

son for choosing not to measure pressures directly was to maintain the optical

and structural integrity of the glass test surface, which was comprised the first

1.0rn of test-surface chord. But even acrylic test surfaces were not installed with

pressure taps. The reason was that velocity resolution of the LDA is 15 times

better than the resolution of available pressure probes. At the low flowrates used

in this channel the difference between static and dynamic pressures were on the

order of 0.01 inches of water. Using available pressure probes the finest velocity

resolution would have been ±0.035m/s or 14%. This made standard pressure taps

or a scanivalve system inaccurate as well as impratical for setting the stationary

freestrearn-velocity gradient.

Setting flow at the test-section leading edge. On the leading edge a fresh boundary

layer is started for laminar and turbulent experiments. The quality of the test

boundary layer is set by adjusting flow through the bypass bleed. The bypass was

designed to uniformly extract flow across the spa-. of the channel. Flow wedges

and honeycomb direct bypass fluid to four manually adjusted valves, which are

trimmed to give uniform flow across the span.

Mass flow rate through the bypass is set such that the stagnation point is just on

the lower (test surface) side of the leading edge. This is detected by visualization

of the test surface boundary layer. Mass flow rate should not be significantly more

than this. The procedure for setting the mass flow rate is as follows. (Recall that
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a 0.15mm dye slot is formed at the junction of the leading edge and the first test

surface.)

1. Open all valves an equivalent amount to match flowrates;

2. Pass dye at a very slowly through the dye slot. There are three possibilities

for behavior of the dye emitting .'or the slot.

o If a smooth sheet of dye covers the test surface until Xchord ' 0.5m, the

bypass is open just right or perhaps too much. Explanation: a stagnation

point (line) is resident on the test surface at the leading edge.

o If hairpins of dye are visible, dye flowrate is too high.

o If turbulent spots are visible as dye leaves the slot, the bypass flowrate is too

low. Explanation: a separation on the test surface is resident at the leading

edge.

3. The stagnation line can be crudely checked by hydrogen-bubble visualization

if the inlet flowrate is less than 0.2m/s. Swing the hydrogen-bubble wire/trip

ahead of the leading edge and power it up safely.

Setting nonstationary waveforms. The magnitude of the six waveforms at the test

RD-valve were initially chosen according to the appearance of separation during

flow visualization. The magnitude of waveform O.Wav, which exerted the maxi-

mum suction, was chosen to keep spanwise extent of the separation from exceeding

1/3 of the tunnel width, W. The magnitude of waveform 5.Wav, which exerted the

minimum suction, appeared to correspond to incipient separation. The magni-

tudes of intermediate waveforms were chosen at equal intervals between 0.Wav

and 5.Vav.

Complementary waveforms at the exit RD-valve were chosen to maintain a sta-

tionary freestream velocity at the inlet. The magnitude and the phase delay of the

complementary waveform could be specified. A phase delay of 1800 performed best

for each of the waveforms. The magnitude of the selected test and complementary

waveforms are given in table C.1. Power spectra of the Dantek LDA tracker output
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confirmed that the inlet flow was stationary during forced, nonstationary condi-

tions. For each case, the power spectra of u-velocity was flat (essentially white

noise) for frequencies below 20Hz and tapered off for higher frequencies.

Setting side-wall bleeds. A small regulating valve controls the flowrate for each

side-wall bleed. The flowrate is set based on flow visualization and measurement.

The amount of flow withdrawn through the side-wall bleeds was not significant

enough to affect streamwise freestream-velocity gradient. Side-wall bleeds could,

however, considerably alter the spanwise freestream-velocity gradient. Flow vizual-

ization revealed that the test-surface boundary layer was severely distorted in the

spanwise direction when flowrate through the side-wall bleeds was too high. Side-

wall bleeds were then adjusted to cause streaks to remain parallel with the side

walls and set equal to one another.

B.2 Calibration and Operation of Electronics/Instruments

Instruments were calibrated regularly and calibration values were used during

real-time data acquisition. The manner in which we forced the typical two-color,

two-component LDA system to supply three components demanded a special pro-

cedure for calibration of each component. The goal was an offset voltage and

velocity/voltage slope for each individual channel which the computer could con-

vert to real velocities.

The u-component was probed by green beams with a 40MHz shift and processed

by a tracker. Thus the standard procedure described below could be used for

calibration. The u-component was probed by green beams with a 38MHz shift and

processed by a tracker. The consequences of this nonstandard shift will also be

described below. The w-component was probed by blue beams with a 40MHz shift

and processed by a counter.

Standard Calibration Procedure. The calibration of voltage offsets remained the

same for all channels regardless of the Bragg frequency shift. First the signal to
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the Bragg cell is fed into the photo detector port on the front of the downmixer.

The signal is downmixed by 200kHz, the standard setting for this facility, and then

passed to the tracker or counter which converts the frequency into a nominally-

DC voltage. An A/D converts and delivers this signal to the computer. Thus we

obtain the offset voltage corresponding to a velocity of Om/s.

Determination of the velocity/voltage slope required as an intermediate step the

determination of the frequency/voltage slope. For the 40MHz lines, the slope was

found by recording the tracker's output voltage as the frequency of the downmixed

signal changed. A linear regression through the frequency/voltage data determines

the slope.

Variations on a Calibration Procedure. As was mentioned before 38MHz Bragg

shifting applied to the v signal prevented us from solely using the standard pro-

cedure. Why was 38MHz shifting necessary? The compact optical configuration

developed by Humphreys (1988) put both u and v signals on green beams which re-

quired electronic separation after the green photomultiplier. The 2MHz frequency

difference accomplished the electronic separation. The advantage of this optical

configuration was that it assured the coincidence of the measuring volumes for all

three components through the use of a common pinhole in the field-stop system.

see notebook on 14 July 88.

The downnixer referenced to the 38MHz line does not deliver calibrated down-

mixed frequencies since we are operating it off-design. The voltage offset is cali-

brated according the the procedure in the previous subsection. But the slope is

calibrated only for the tracker and A/D in this channel. This is done by sending a

downmixed signal out of the u-downmixer into the v-tracker and then following the

procedure above. Thus the 38MHz mixer only participates in calibration during

determination of the voltage offset, and not for slope.

Although the w-component was not measured for this study, the procedure for

its calibration can be quickly dispatched for the sake of reference. By reciprocating
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the A/D output from the counter, the u-component could be calibrated exactly

like a tracker. Reciprocation took place in the software.

B.3 Flow visualization

Of the assortment of flow visualization techniques available to water flow exper-

iments, three have been used in this facility: hydrogen bubbles, injection of food

dye, and laser-induced fluorescence.

Hydrogen bubble. Hydrogen-bubble visualization was used during qualification

of the facility rather than for presentation quality imaging. The range of flow

velocities typically run in this tunnel, from 0.15 to 8m/s, is too fast for quality

hydrogen-bubble images.

On- hydrogen-bubble wire has been quasi-permanently installed near the lead-

ing ed, of the test surface. The other electrode is one of the brass valves nearby;

these valves set the stationary streamwise freestream-velocity gradient. The wire

was 0.13mm stainless steel that was crimped every 3mm. This is the same type of

bubble wire that was used by McAlister of Ames (I think the reference is Carr, et

al. 1977). Crimping causes the bubbles to detach in dense streams rather than a

simple sheet.

The wires permanent status is a consequence of the dual usage it has served.

Hydrogen-bubble visualization was initially used for visual confirmation of the

leading-edge stagnation point. The wire doubles as a turbulence trip when it is

swung to contact the test surface near the tail of the leading-edge assembly.

Food dye. Food dye has been the technique most used in this tunnel. Every type

of slot that connects the test section has been used at one time or another for the

injection of food dye. By this means the boundary layers on the test surface and

along the side walls have been visualized. For instance, dye was injected through

the side-wall bleed to visualize the side-wall boundary layers during times when

the prevailing freestream-velocity gradient was zero and when it was adverse. The
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evolution of the three-dimensional separation on the test surface was visualized

extensively for all cases of U10 and suction S. Food dye visualizations were recorded

on VHS videotape, 35mm color slide film and black-and-white print film.

Laser-induced fluorescence (LIF). Fluoroscene dye was also used in conjunction

of laser-light sheets to visualize cross-sections of the separated-flow structure. The

effect is dramatic as the dye turns to a bright yellow-green in a dark background.

Cross-sections of the zz-plan view and the xy-cut were visualized for the base case

during separation development and decay. LIF visualizations were recorded on

35mm color slide film, 35mm black-and-whiLe print film, and 16mm black-and-

white and color movie film.
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Appendix C

Data Acquisition and Analysis

C.1 Types of data acquisition

raw data.

C.1.1 time-averaged

profile.

stream wise.

spanwise.

C.1.2 phase-averaged

Phase-averaging is essential for the experiment because the global flow-field for

each cycle is highly sensitive to the initial conditions. Small variations in the

initial boundary layer at the instant the adverse freestream-velocity gradient was

imposed would be amplified in the separation structure. The roll-up of the first 5 or

so spanwise vortices from the separated shear layer were strongly phase-locked, but

subsequent vortices were less phase-locked which gave the appearance of a quasi-

steady separation. Individual realizations of separation development, shedding,

and decay were never identically repeatable. Since the whole flowfield was not

swept instantaneously, but sampled point-by-point, phase-averaging was essential.

Due to the extended times over which phase-averaged profiles were sampled, in

Resultant time delays show up in It is not the global structure that is so sensitive,

but the time-delays in the unsteady structure. A 'period of duration greater than

20s did not guarantee better convergence of phase-averaged profiles, but more
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samples per average converge at about 200 samples. This is demonstrated in

figure C.1.

The primary resistance to convergence arose from the periodic roll-up and shed-

ding of the separated shear layer. Small delays in the release of shed vortices

brought large variances in later phases and consequently delayeO convergence. Sur-

prisingly, the phases that required most samples for convergence were those im-

mediately after release of the adverse freestream-velocity gradient. This behavior

was resolved by investigation of non-averaged velocity histories. Consider phases

greater than 8 seconds after imposition of the adverse freestream-velocity gradient

through 2 seconds after its release. A non-averaged velocity history compared to

a phase-dveraged velocity history shows that large velocity fluctuations from vor-

tex shedding are the dominating physics during these phases. These fluctuations

disappear as phase-averaging converges.

Smoothing. Neither phase-averaged data nor raw data has been smoothed artifi-

cially.

Warning against phase-smoothing. Phase-smoothing data can be deceptive.

I highly discourage its usage. Phase smoothing as reported by Humphreys (1988)

needs to be carefully reconsidered. The method when applied to time-mean val-

ues is innocuous enough, though interpolation is not a necessarily a conservative

(check???) technique. The method when applied to double and triple products is

quite erroneous. This can be quickly shown by considering the definition of the

simple double product (u,-uj). The value was obtained from the subtraction of

ensemble sums Z ui, E uj and E uiuj, according to the formula

( iuj) = n(1 uZ )-Euiuj

n

In order to properly smooth this (uiuj) across several phases, the formula above

needs to be inverted to back out original sums, the sums then applied to the larger

time interval, and finally the above formula re-evaluated.

94



Roy W. Henk 7/16/90 9:14am

A related difficulty is that different y-locations in the profile did not see the

same cycle-to-cycle variations. I admit that I am being persuaded to phase smooth

even as I write at least for the purpose of presenting good integral parameter plots.

Rather than resort to phase-smoothing another possibility is to time-average phase-

averaged results and to compare resultart profiles and their integral results with

time-averaged profiles in a stationary separation. It is instructive to openly discuss

the difficulties rather than hide them.

C.2 Types of analysis

A wide assortment of programs were written to analyze raw, time-averaged and

phase-averaged data that were collected during this experiment. Programs were

written to fit linear and nonlinear functions, perform spectra analyses, interpolate,

integrate, and just rearrange the data in a clear format. Most of these programs

depended heavily on functions described in Numerical Recipes in C by Press, et

al. (1988).

From Raw Data

Power spectra. Raw data, i.e. unaveragcd, from individual channels were stored

for processing by a power spectra program. Segments of a data record have a

Parzen window applied and are averaged for minimum variance per data point.

Most power spectra analyzed have been for cases of stationary, adverse freestream-

velocity gradients wherein continuous data records were collected. For estimates

of peak frequencies during unteady flow, apparent cycles were counted and then

divided by elapsed time.

Number of samples needed for averaging.

Integral boundary-layer parameters.

Time-development, shedding frequency. time traces

Time-responses were measured from both phase-averaged and raw data.
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Comparison of phase-averaged results with raw data. Phase-averaging both reveals

and hides some significant features of unsteady separation as is seen by comparing

figures 6.14 and 6.17. Information that is lost includes the magnitude of velocity

oscillations 6 seconds after imposition of the adverse freestream-velocity gradient

in (a), and the amplified oscillations immediately after restoration of a uniform

freestream velocity in (b).

C.3 Potential-flow analysis

The potential flow analysis follows a two step process. First, take a very sim-

plified geometry containing suction through a square hole in a flat plat with a

uniform freestream. Then generate the complete geometry by imaging the results

of the simplified analysis about specified planes. Imaging thereby generates the

rectangular cross-section of the test section.

The simplified geometry. Consider the potential flow of a uniform stream affected

by a continuous distribution of sinks from (x : x1 < x < x 2 , z : z1 < z < z2).

The. potential at point P due to a source at S is

q 1

where q = (volume / time] disappearing per sink. Let -Isi, a constant be sink

strength per unit area, where jsj is two times local suction speed since there are

two sides to a sink.

At x = , z = q, consider an element d~drq of the distribution. Then the potential

at field point P(x, y, z) due to elementary source -jsjdcd 7 in a uniform stream at

velocity U is

S(x,y,z) = Lu- + [2 /[27--( )2 + y2 + (z_

which can be differentiated to obtain the velocities u = 94 /8x, v = a4/ay, and

w = 04/9.
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The resulting equations for u and w are easily integrated twice to obtain

u g 1 In (z2-z)+ \+ -x + 2+ (z-z 2)2

-in (zi - Z) + /(x- x2)2 + y2 + (z zl)21

-In (z2- z) + x- xl)2y2±(z-z 2)2

+ In (zi - Z) + jix - x&)2 + y2 + (z - z2)'J (Three.0)

and

w = SI in (x2 - x) + x/(x - x2)2 + y2 + (z - z2)2

In (x-Ti -X) + x - x1 )2  + 2+(z -z22

-In (x2-x) +  /(x - x2)2 + y2 + (z - z)2

+ In (x - x)± + (x -xi)2 +y2 +(z -z2 )1 }
The equation for v is easily integrated once. For the second integration, however,

we need the identity...

dx 1 tan- 1 XN'bm for bm- an > 0
(Mx2 + n)7 x2+b Vn(bm -an) /(ax" + b)

x

-n a + b for an = bn.

For completeness, two more identities ought to be considered but these arise only

for y2 = 0, which is at the suction wall. Since I am not interested in thl .c,,
exactly at the suction wall and consequently will not be evaluating any integrals
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there, I will not list the two extra cases even though they are simple. After the

second integration, v is given by...

sly (z2-z) [.4 (x2-x)k--z21

4r " ylz z21 [ /y 2[(x2 - x)2 + y2 + (z - z2)2]

- tan_ 1  (X - x)Iz - z211
yIz [Vxi[(z2 - z) + y2 + (z- :1)2]

(iZ) [Itan'l (x2 -x)1z -ZI I
ylZ - Z11 l I/Y2[(x2 - x)' + Y' + z)]

- tan- (x- X)z- -z 1 }
-1/y2 [(xl - x)2 + y2 + (z - Zl) 2 I

When either of the factors (z2 - z) or the (z1 - z) equals zero, then the whole

quantity [...] that it multiplies must be identically zero.

The complete geometry. Upot(x, y, z, UO, S) for the complete geometry, a rectangu-

lar cross-section of height H and span 14, was estimated by the standard procedure

of images. In this procedure, the influence of images using the above analytic for-

mulas functions are summed as necessary, up to several thousand images, in order

to generate the walls of the tunnel geometry. Iterations proceded automatically

until the iterative correction to the velocity magnitude was less than 10- 5.

The resulting velocity field LJpot (x, y, z, UO, S) for the three velocity components

is not represented by such a simple (or complex) collection of functions as those

listed above. Instead, it is now just a collection of numbers. The usefulness of

the resulting field was increased by finding a pol3ynomial fit to the field when the

variables (xz, U0 , S) were fixed.

C.3.1 Polynomral fit to the potential flowfield

The following analysis will concern itself only with flow along the centerline, in

order to avoid complications from skewing of the boundary layer, and only with

the streamwise velocity, Upot(x,y,: = 0). We seek a fit g(y) upot. Fix x = a. Let
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y = H - 9 so that the equations are referenced to the test surface by t instead of

the control (suction) surface by y. The procedure of images sums up equation C.0

many times over, so that g can be reckoned from the individual terms as

g(y) = [kln - 2n n k3n + V/]"2 + (1 -H + k5 )2]

In4

An involved set of gross simplifications reduced this equation to

9(y) = k6n+ nn11+ )21

Finally, the expansion In II +xI -- x _x2 + 3 _ IX4 +. gives to first order

g(y)La= CO + C2 92 (Three.1)

as a possible polynomial fit. Figure shows that such a simple polynomial fit g(y)

for a fixed (x, z, U0, S) adequately fits Upt to within ?????% at each point.

C.4 New equations for integral parameters

Now that the potential velocity profile was approximated by the function g(y) =

CO+C2y2 , algorithm (1) furnishes new equations for the integral parameters. Outer

points of each velocity profile, whether time- or phase-averaged, were compared

with this function. By interpolating to determine where the potential and exper-

imental profiles matched within 1%, 899 was found and designated as the edge of

the boundary layer. The new equations for the integral parameters are...

Displacement thickness

co3* + 3 j (g -u) dy (0.21)

Momentum thickness

02 -COC2 o3 L2 o5
C 22+-OO + f u (g - u) dy (C.3)
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The cubic and quintic equations were easily solved using a classic root-finding

routine. Rules that selected the answer from all the roots found are...

1. 6* and 0 must real valued.

2. 0 < 6* < 2699, and (3.4)

3. 101 < b*
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Appendix D

Error Analysis

Careful analysis of errors establishes the bounds within which numerical sim-

ulations and future experiments can be expected to duplicate these experimental

results. In this appendix, we will state error bounds for the experimental results

and for derived quantities and analysis. Error bounds differ entirely from the

bounds of the experimental domain which were described earlier in section 5.1.

For this analysis we will apply two methods for determining error bounds:

1. The method set forth by Kline and McClintock (1953) gives bounds for worst-

case errors. This method considers each source of error to be linearly inde-

pendent of the others. Consequently the total error is the square root of the

sum of individual errors squared. This is akin to the magnitude of a n-space

vector for n linearly-independent errors. The chosen confidence level for this

analysis is 95% or 20:1 odds.

2. A modification to method (1) which describes likely error bounds based on

duplicate measurements under identical conditions. This method, based on

experiment repeatability, substitutes some arbitrarily-estimated error bounds

with observed error bounds. Sources of error are classified according to the

categories set forth by Moffat (I9SS). The two categories are bias and random

errors. Bias errors are fixed and can be due to calibration errors, probe

alignment problems, etc. Slowly-varying effects like signal drift will also be

assigned to bias errors. Random errors are analyzed according to stochastic

methodology and assumed sample distributions.

A ,,ummarv of the error analysis is given in table D.1. The following sections

will describe how these values were obtained.

D.1 Bias errors
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Primary contributions to bias errors arise from valve positioning errors, calibra-

tion of the LDA intersection angles, cross-contamination of velocity signals, and

instrument system errors. Each of these will be discussed individually.

Valve-positioning errors. Error in positioning is ±1 increment from the input

valve position.

Calibration of LDA intersection angles. An error in the calibration slope affects

the fluctuating quantities in a similar manner, except that each must be treated

as a product term. That is

A (U 'U ') = 2 u .1u '
Aslope Aslope" (.1)

Cross-contamin ation of velocity signals. Primary contributions to cross- contami-

nation of velocity signals arises from the following two reasons: (1) LDA fringes are

not perfectly orthogonal to each other, (2) LDA fringes are not perfectly aligned

with the channel axes.

Throughout data acquisition beams were oriented to minimize contribution from

the u-component into the v-velocity component. This was accomplished by rotating

the transmitting optics until the time-averaged v-profile was flat near the wall for

zero pressure-gradient conditions. The finest adjustment that can be expected is
0.5' which suggests an error of ±0.009 • u.

Flatness of the v-profile was the condition of choice for two reasons: (1) errors

in the zero- velocity voltage offset prohibited setting v identically equal to zero near

the wall; and (2) for all intents and purposes the zero pressure-gradient v-profile

is flat throughout. For example, table D.1 indicates that the error bounds for the

v-component is ?????. The analytical solution to the Blasius laminar boundary

layer, however, gives a maximrum v-velocity of - 6 x 10-4rn/s -_ 0.003. Uo.. Thus

the zero pressure-gradient v-profile is flat within the error bounds for V.

The approach angle required for measuring near the wall caused a w-contribution

to the v-velocity component. The nonshifted reference beam approached the wall
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at an angle of 0.O156radians. From table D.2, the v-fringes were generated at an

angle of 0.0488radians with respect to the reference beam. Thus the w-component

contribution to v was 0.0644 • w. Since the majority of data acquired was along

the centerline of the channel, the contribution from the w-component is small but

not identically zero due to the separation asymmetry mentioned in chapter 5.

The u-component also received a u-contribution on the order of -0.0462

from table D.2, since the nonshifted reference beam cut across the span of the

channel. As in the previous paragraph, the contribution of the w-component is

small but not identically zero.

Instrument system errors. TSI estimates system errors for the entire tracker

system to be 0.4% of full scale range. For this experiment, full scale covered

0 - 5 Volts for the frequencies 0 - 500kHz. This corresponds to 0.02 Volts or about

0.Ollm/s uncertainty on u and v. This worst-case estimate is more than three

times larger than the total estimated uncertainty for u and v given in table D.1.

The reason for this discrepancy follows the second method of determining error

bounds and is given in the following paragraph.

An independent estimate of portions of instrument system bias error was de-

termined by comparing system calibrations made throughout the data-acquisition

process. Table D.2 shows the average calibration for voltage offset and for velocity-

voltage slope. In addition, this table gives the range over which calibration values

varied about the average. The second estimate for system error in u is then given

by the formula (0.554. 0.0O74)[A\'oltsrnaz + (2.001 . 0.0012)]. Since AVoltsmaz for

u is < 0.8 Volts, the system error in u is < 0.0033m/s. The corresponding estimate

for v-system error is < 0.0006m/s.

D.2 Random errors

Primary contributors to random errors include electronic noise, quantization

errors by the A/D converter. Each of these will be discussed below.
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Sources for error in the integral parameters will be thoroughly discussed.

Chapter 4 described various definitions for the integral parameters. For the

zero pressure-gradient boundary layer, discrepancies between the definitions are

generally less than 5%. The largest source of error for the displacement thick-

ness arises from errors in estimating the location of the wall. Discrepancies in

the displacement-thickness integral for differing wall-estimates can be up to 30%,

varying linearly with the estimate.

For steady, applied suction (adverse pressure-gradient cases), discrepancies be-

tween integral parameters for the definitions are often 40% or more. In unsteady

flow cases, it is better to describe absolute discrepancies since zero-crossings cause

ratios to hit infinity.

D.4 Summary

Problems. It is interesting that in figure 6.11, the quasi-steady velocity profile

showed a weakly positive (forward) flow near the wall, while at LP:2 the flow near

the wall was distinctly reverse. I tested the calibration to determine if a faulty

calibration could explain this peculiarity. A new calibration did not change the

sign of the velocity. It should be noted, however, that the uncertainty analysis of

(u)-velocity would allow for a zero or negative velocity. The effect was repeatable

because time-averaged profiles and an independent phase-averaged profile con-

firmed these results. The best explanation is that since the quiescent owl-face

structure is sustained by inflow through the sides, a mean stagnation point can be

observed upstream of LP:1 resulting in forward flow there. At the location LP:2,

however averaged profiles are dominated by shed vortices forcing the near-wall flow

in the reverse direction.
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(a) S = saddle point (b) N = node
1-I = separation line

(c) F =focus

J R

(d) R = reversed flow

Figure 2.1 Defining diagrams: Skin-friction lines characteristic of a (a) "saddle
point," (b) a "node," and (c) a "focus." (d) Schematic of reversed
flow..
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N. Didden and C.-M. Ho

(a) (b)

Downstream- Upstream-
moving moving
separation separation

locity profiles in separated flows. -- -, steady separation;
unsteady separation velocity profile.

Figure 2.3 Upstream- and downstream-moving MIRS 'separations' (Didden and
Ho, 1985).



~~ riq. 4
bdSIC 2

00- W on tlh. I

Cpres:
the rec

Stable

On t.he

- - Tho

Figure A variety of skin-friction paruerns are found on a & I
hemisphcre cyijnd r at incidence: (a) a = 10 . b) a = 15% $a
(c) a = 33.Y. Bippes (1986). 2.

Figure 2.4 Limiting streamlines visualized for flow about an axisymmetrical
_____ body at an angle of attack (Bippes, 19S7). _____

Figure owl-face separaoon sncrunrr on an axisymrneric body at

incidence (a) spatial saucture visualized by dye. (b) sicin-
friction pattern. Bippes (1986).

Figure Owl-face skin-fricrion pattern on a rectangular wing at
incidencc. Birpes (1986).

Figure 2.5 Owl face of the first kind separation on an axis m tial od an
on an airfoil each at an angle of attack (Bippes, 1987).
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3-D Separation At A Wall With

No Singularity Of Shear Stress

Streamsurfaces Generated Near

A Negative Bifurcation

Figure 2.7 Convergent streamlines without separation: Hornung and Perry (19S4).I
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Inside the test section

Plates are perforated to
tailor suction through wall.

Honeycomb and contractiong uide

flow uniformly crons "a dn

muwet a m

Fiur32 c ic R n R ev lving-disc seals against

0,/_-- a Delrin bearing for low-
friction area adjustment.

~Do)wncomer conducts water to

- -i-Tqsump. Atmospheric pressure
/" )|is maintained at valve exit.

- Flat dc motor produces high torquefor high-speed valve positioning.

00RVIDT monitors shaft position for
/ analog-feedback control.

All 'electrical components are dry and
..J multiply-sealed against moisture.

-. Figure 3.2 Schematic of the Revolving-Disk Valve Assembly.



Figure 3.3 Photograph of the finished leading edge. The smooth transiti on from
the half-ellipse to a flat plane is visible on the top surface. The taill
is sloped at 22.5' to butt against the edge glass test surface and to

set the slope of the dye slot.

*.e~~eeOO *O S@ @ 0

*0 00 060 0 0 00 00 0 00 0 .

* 0O~ 0 0 0 0 0 0 0 0 500

Figure 3.5 Photograph perforated control-wall plates: (a) type I plate. (b) type 21
plate.
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Figure 3.6 Photograph of two manual and three Revolving-Disc valves mounted
under the control wall of the test section.

Figure 3.7 Photograph of a partially disassembled Revolving-Disc valve. The
Delrin bearing/seal, the drive sprocket and drive cylinder are shown
attached to the stainless-steel valve plate. Also shown are a coarse
disc, a fine disc, a drive belt, a nylon shaft bearing, a spring, two
washers and a snap ring.
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Coarse Valve: /
Area: 4.64in- = 0.00300m2  /
Cd = 0.80

- Data and Regression /
- - -Ideal Flowrate

Fine Valve: /
Area: 1.29in Z = 0.000833m2

."7=" 0.150.015 0- - Data and Regression /
co - - - Ideal Flowrate /E _ __ _ /,//

ES0.010~

C-)/

> 0.005

0-
0 0.2 0.4 0.6 0.8 1.0

Open Area / Maximum Area

Figure 3.8 Volume flowrates for the Revolving-Disc Valve versus open angle, t.
Results for two versions of the revolving disc are shown.
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Parameter Value at integral upper limit

limit y-,, Y=-99

5" 1.72108 1.715

e 0.664103 0.6533
H 2.5916 2.605

TABLE 4.1 Comparision of integral parameters for the Blasius zero pressure-
_ _gradient velocity profile for two upper limits to the integral.
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Integral Area Algorithms
0 d:\march_89\@lpb\mO91OssO.dat

0 .4 , , , , , , , , l , , , , 1 1i, , i, , , , i , , ,

Dark Area 899
U[m/s]: 0.214
S"[m]: 0.00751
9[m]: 0.00129

I Light and Dark Area
0.3 - Uma[mi/s]: 0.223

6 [m]: 0.00860
G O[m]: 0.00225

0.2-

899!

0.1 -

:. . ... ....

.~~ ~~ ~~ ~ ~~ ~~~~ ... . ...,. ,:> .: .. .....: ... .'t ,>: .> ,

0
-0.05 0 0.05 0.10 0.15 0.20 0.25

U [m/s]

Figure 4.2 The area of the displacement thickness as estimated by two candi-
date algorithms is shown. Algorithm (1), which used a g(y) fit to
the potential flowfield, computes the area filled with dark gray up
to 699. The polynomial g(y) shows an excellent fit to the outer six
points of the time-averaged velocity profile. Algorithm (2) computes
the area filled with light and dark gray..
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Initial Conditions

U0  0.189 0.214 0.250 0.135 [m/S]
Inlet Flow-rate 0.00864 0.00979 0.0114 0.00617 [M 3/sj

00P.G. 0.00143 0.00133 0.00124 0.00165 [n

Re0  247 265 284 213
Note: 00 P.G and Re0 at location LP:B a: -from fit of theory to data.

TABLE 5.2a Initial conditions for all flow cases.

U0 [mis]
0.189 0.214 0.250 0.135

Waveform Suction Flowrate, % of Inlet Flowrate Volume [m3Is]
0.Wav 18.6 16.4 14.1 0.00161
1.Wav 16.3 14.4 12.3 0.00141
2.Wav 13.9 12.3 10.5 0.00120
3.Wav 11.6 10.3 8.8 0.00100
4.Wav 9.3 8.2 7.0 13.0 0.00080
5.Wav 7.0 6.2 5.3 0.00060

Waveform Maximum DC / Dx [m-11 ; Potential flow estimate

0.Wav 2.86 2.52 2.19
1.Wav 2.53 2.22 1.93
2.Wav 2.16 1.90 1.66
3.Wav 1.86 1.63 1.42
4.Wav 1.51 1.32 1.14 2.04
5.Wav 1.14 1.00 0.86

WNaveform (aWp / @z,,. / (aCp /x,, ; Potential flow estimate

0.Wav 0.106 0.106 0.105
I.Wav 0.105 0.105 0.105
2.Wav 0.104 0.105 0.104
3.Wav 0.094 0.095 0.096
4.Wav 0.09 1 0.092 0.093 0.0931
5.Wav 0.097 0.097 0.098

Waveform Case Numbers for textual reference

Zero P.G. Oz 1Z 2Z 3Z
0.Wav 00 10 20
1.Wav 01 11 21
2.Wav 02 12 22)
3.Wav 0 3 13 23
4.Wav 04 14 24 3 4
5.Wav 05 15 25

TABLE 5.1 Flow Parameters: (a) Upstream conditions for the four LI0 cases; b)
Four uniform velocity and nineteen adverse, velocit-y gradient cases-
by case number, per cent suction and pressure- gradient estimate.



Integral Parameters for Zero Pressure-Gradient Conditions
from Time-averaged profiles under steady conditions

U0  x [m] Station 60 %A 0 %A

0.139 0.555 LP:A 0.00437 1.9 0.00172 5.2
0.575 LP:B 0.00453 4.2 0.00167 1.0
0.613 LP:D 0.00423 -4.7 0.00157 -7.5
0.651 LP:1 0.00538 18.6 0.00186 7.5
0.689 LP:2 0.00521 12.5 0.00166 -5.7

0.187 0.575 LP:B 0.00352 -6.1 0.00136 -4.7
0.613 LP:D 0.00361 -5.7 0.00135 -7.6
0.651 LP:1 0.00415 5.9 0.00156 4.4
0.651 LP:1 0.00379 -3.1 0.00143 -4.2
0.689 LP:2 0.00A 1 4.6 0.00156 2.4

0.215 0.555 LP:A 0.00302 -12.4 0.00116 -11.9
0.575 LP:B 0.00331 -5.3 0.00126 -5.4
0.575 LP:B 0.00344 -1.5 0.00125 -6.0
0.613 LP:D 0.00365 2.1 0.00135 -0.9
0.613 LP:D 0.00364 1.9 0.00139 2.3
0.651 LP: 1 0.00354 -3.1 0.00136 -2.3
0.651 LP:1 0.00376 3.0 0.00142 2.1
0.651 LP: 1 0.00390 6.8 0.00154 11.0
0.689 LP:2 0.00404 8.3 0.00153 8.1
0.689 LP:2 0.00356 -4.5 0.00132 -6.9
0.727 LP:3 0.00402 5.6 0.00158 9.1
0.775 LP:4 0.00353 -9.3 0.00148 -0.2
0.775 LP:4 0.00392 0.7 0.00150 1.0

0.248 0.575 LP:B 0.00302 -7.2 0.00125 0.7
0.613 LP:D 0.00338 1.6 0.00133 5.0
0.651 LP:1 0.00331 -2.6 0.00125 -3.8
0.689 LP:2 0.00376 8.4 0.00158 19.2
0.689 LP:2 0.00358 3.2 0.00137 3.9

from Phase-averaged profiles

0.214 0.575 LP:B 0.00308 -12.2 0.00113 -15.7
0.613 LPD 0.00356 -0.6 0.00142 4.3
0.651 LP:1 0.00353 -3.6 0.00137 -1.7
0.689 LP:2 0.00405 8.3 0.00161 12.8
0.727 LP:3 0.00373 -2.3 0.00132 -8.8
0.775 LP:4 0.00366 -6.4 0.00141 -5.1

TABLE 5.2 Boundary-layer integral parameters for cases OZ, 1Z, 2Z, and 3Z at
several streamwise locations. Results from nonstationary case 10 are
also listed for the boundary layer after adverse conditions have been
released.



Vel. Case Suction valve Streamwise Velocity U

status mean Std. Dev. (max-min)/2
[m/s] (m/s] % [m/s] %

0 leak-tight 0.1817 0.0020 1.1 0.0041 2.3
closed 0.1832 0.0018 1.0 0.0037 2.0

leak-tight 0.2110 0.0015 0.7 0.0029 1.4

closed 0.2125 0.0012 0.6 0.0024 1.1

2 leak-tight 0.2477 0.0027 1.1 0.0056 2.2
closed 0.2500 0.0026 1.0 0.0044 1.8

3 leak-tight 0.1354 0.0013 1.0 0.0022 1.6

closed -0.1388 0.0019 1.4 0.0033 2.4

TABLE 5.3 Uniformity of freestream velocities along the centerline confirms zero
pressure-gradient Blasius boundary layer.
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Figure 5.1 These suction -waveforms are input to the RD-valve for nonstation-
ary forcing of the freestream. During stationary, adverse freestream-
gradient conditions the suction S is maintained at the volume flow-
rate for "valve open"./



(a) Plan View of Separation and Tunnel Geometry
Side Wall

t5cm I1

x

Separation line

Saddle point Image of suction port

a .on control wall

AB|D' 2 3 4I

(b) Section a-a, Cross-section of Separation

f Separation streakline

x eparation w.. Test Surface

Measurement Stations, LP: u

Figure 5.2 A schematic of tunnel geometry and separation structure shows lo-

cation of measurement stations.
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Integral Thickness Development: U1

Figure 5.4 Boundary-layer integral parameters for case 1Z along the centerline
of the tunnel.
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Figure 5.5 Spanwise velocity profiles during (a) uniform freestream conditions.
(b) adverse freestream-veloci t gradient conditions.
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Freesrream U-velocity vs. Chord and Phase

Phase

Figure 5.7 Freestrearn (u)-velocity versus chord and phase.
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Figure 6.1 The owl-face separation struictuire: (a) Plan view as seen through
the glass test surface. An image of the scquare port in a type 3 plate
on the control wall is also visible; (b) Side view cross-section.
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(a) Plan view of separation zones and tunnel geometry

Side Wall

Zone I Zone V

Separation line

Zon IV

aSadde .. Zone III

(b) Section a-a, Cross-section of Separation

V -Separation 
streakline

,jeparation we Test Surface
A B FD 2T -

Measurement Stations, LP: U
Figure 6.2 Zones of the quasi-steady separation structure. Forward. laminar

flow at all times during nonstationary forcing characterized Zone I.
Quiescent forward or reversed laminar flow distinguishes Zone II.

"_ Zone III experiences large-scale unsteadiness. Zone IV is down-
stream of the saddle point at mean reattachment. Zone V is outside
the principal separation structure. Fresh fluid continually feeds into /
Zones II and III, which comprise the separation wake.
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PART 4. COMPLETED UNSTEADY 2- D COMPUTATIONAL WORK

1 INTRODUCTION

Separation is a critical consideration in a variety of technical situations, including the

design of low-speed aircraft, i.e., long-endurance vehicles at high altitudes, high aspect ratio

sailplane wings, remotely piloted vehicles at low altitudes, ultra-light aircraft, jet engine fan

blades, inboard sections of helicopter rotors, and canards on generator aviation aircraft.

Separation depends on many factors, including unsteadiness, adverse pressure gradient,

freestream turbulence intensities and spectra, compressibility, and three-dimensionality of the

flow. In this effort the effects of adverse pressure gradient and unsteadiness are studied by

computation. In order to isolate these effects, the test flow consists of a laminar, incompressible

boundary-layer flow with a predictable, well-described unsteady freestream pressure gradient

applied. Cases for impulsively (gusts and lolls) and sinusoidally fluctuating pressure

distributions are possible in the computations. The response of the boundary layer to these

fluctuations is observed, in particular, separation location and structure and the rate at which

separation regions develop and decay. If these zones develop slowly, there may be no serious

problems; but if the off-design unsteady conditions persist sufficiently long, the buildup of these

separated regions could be fatal to a low Reynolds number vehicle (chord Reynolds numbers of

50,000-500,000). The recent conference on Low Reynolds Number Aerodynamics at Notre

Dame in 1989 (see T.J. Mueller 1989) was focused on the performance of these vehicles.

Crouch and Saric (1986) state that in this lower range of chord Reynolds numbers (down

to 10,000), the airfoil performance rapidly deteriorates. This drop in performance is due to the

increase in skin friction (thus, increase in drag) and the fact that the airfoil can behave as a flat

plate. To account for the increase in drag, airfoils have been designed with strong adverse

pressure gradients to increase lift. However, a laminar separation bubble is formed when a

previously attached laminar boundary layer encounters an adverse pressure gradient of sufficient

magnitude to cause the flow to separate. This phenomena is illustrated in Figure 1. In particular,

the flow phenomena associated with the formation of laminar separation bubbles play an
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important role in the development of the boundary layer. For example, two of the most

characteristic features of separation are the sudden thickening of the boundary layer and the

generation of a slow-moving turbulent wake composed of large-scale vortices.

The laminar boundary layer separates from the airfoil surface at S and reattaches at the

point R downstream of point S. The flow can roughly be divided into two regions (O'Meara &

Mueller, 1987; Roberts, 1980). The first region is bounded by the mean dividing streamline and

the airfoil surface. The mean dividing streamline is the collection of points across each velocity

profile at which the integrated mass flow is zero. The second region of flow consists of the free

shear layer contained between the outer edge of the viscous region and the mean dividing

streamline. The unstable character of the free shear layer results in transition to turbulence at a

location denoted by T. Momentum transfer due to turbulent mixing eventually eliminates the

reversed flow near the w " and the flow reattaches at point R.

The determination of point S and the flow properties in the neighborhood of point S

under both steady and unsteady conditions is essential because this controls the size and shape of

the wake and, thereby, the basic characteristics of lifting surfaces. The classical boundary-layer

criterion of separation for steady flows, that is, the vanishing of skin friction, has been used

successfully in the prediction of the location of separation even though the boundary-layer

approximation breaks down in the neighborhood of separation. Moore (1957), Rott (1956), and

Sears (1956) argue that the boundary-layer equations can also be used to predict unsteady

separation. Sears (1956) suggests as a criterion the simultaneous vanishing of the shear and the

velocity at a point within the boundary layer or the MRS point in a frame of reference moving

with separation. A complete discussion of this condition is contained in Henk, Reynolds & Reed

(1990).

The entire flow field can be predicted with the full Navier-Stokes equations since these

equations are free of singularities. This is the approach we adopt.

2 TECHNICAL APPROACH

Direct numerical simulations are playing an increasingly important role in the
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investigation of separation; the literature is growing, especially recently. This trend is likely to

continue as considerable progress is expected towards the development of new, extremely

powerful supercomputers. In such simulations, the full Navier-Stokes equations are solved

directly by employing numerical methods, such as finite-difference or spectral methods. The

direct-simulation approach is widely applicable since it avoids many of the restrictions that

usually have to be imposed in theoretical models.

The principle goal of this work is the development of a computational method for the

simulation of the process of unsteady separation on the upper surface of a wing. By varying the

freestream conditions (oscillations, ramps), the intermittent off-design conditions low-Reynolds-

number flight vehicles are likely to encounter, such as variations in angle-of-attack or the

passage of a gust, can be simulated and the rate at which separated regions develop and decay

can be studied. In this way it is also possible to verify the length and time scales predicted by

triple-deck theory. The existence of such a method will provide a tool which will enable

computation to complement theoretical and experimental contributions to further the

understanding of the physics of these flows and, ultimately, will provide a tool for the prediction

and modeling of these flows.

Basically, this model involves the use of the unsteady inviscid solution for the airfoil or

wing shape as an edge boundary condition for a Navier-Stokes solution near the wall. The

inviscid solution is described in Section 2.1 and the viscous solution is described in Section 2.2.

Once the viscous solution is obtained, the pressure distribution is determined at the wall and the

"actual" lift and drag histories for the airfoil under unsteady, off-design conditions can be

obtained.

2.1 UNSTEADY INVISCID METHOD

A vortex panel method is used to compute the inviscid unsteady flow around a given

airfoil or wing shape. The unsteady Kutta condition is used as well as conservation of vorticity

and the fact that each point of the wake must be aligned in the force-free position. Changes in

angle of attack or speed cause vorticity to be shed from the trailing edge of the airfoil. This
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vorticity is then convected along aft of the airfoil according to the local velocity vector.

The resulting velocity field is then applied as the edge condition for the Navier-Stokes

calculation presented in the next section.

2.2 UNSTEADY VISCOUS METHOD

2.2.1 PRIMARY EQUATIONS

The partial differential equations governing the motion of a two-dimensional,

incompressible flow of a Newtonian fluid with no body forces and constant fluid properties are

the two momentum equations (Navier-Stokes) and the continuity equation (presented here in

two-dimensional form, for simplicity). Using Cartesian coordinates and allowing for time

dependence, the nonconservative forms of these equations are:
au/at+uau/ax+vDui*y=- ( 1/p)ap/ax+)(a2U/aXZ+a2u/ay2) (1)

av/at+uav/ax+va v fy=-( 1/p)ap/ay+,U(a2v/x2+a2v/ay 2) (2)

au ax+av/ay=0 (3)

In Equations (1) through (3), x is the streamwise coordinate, y is the transverse coordinate, and u

and v are the velocity components in the streamwise and transverse directions, respectively, p is

the pressure, 'u is the kinematic viscosity, p is the mass density, and t is time. The overbars

represent dimensional quantities.

Introducing the definition of a substantial derivative

D( )/Dt=-a( )/at+(V 0 V)( ) (4)

where V is the gradient operator
V = (alax , alay) (5)

and

V = (u,v) (6)

Equations (1) and (2) become the two-dimensional vector momentum equation

DV/Dt = -(l/p)Vp + uV2V (7)

where V2 is the Laplacian operator

V2 = a2/aX2 + a2/ay 2  (8)

By the definition of the gradient operator as given in Equation (5), the continuity equation can be

written in the form
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VOV=O (9)

2.2.2 VORTICITY AND STREAM-FUNCTION EQUATIONS

The pressure is eliminated from Equations (1) and (2) by taking the curl of Equation (7),

i.e., cross-differentiating Equation (1) with respect to y, (2) with respect to x, and combining

equations. The result is
a/Dt( Du/Oy-av/Ox )+u[ D/Dx(Du/Dy-av /Dx )] + v[ /y(aulay-av /Dx )]=

,[a2/X2(au/]y - aV/X) + a2[ay2(au]ay-av/ax)] (10)

Defining the vorticity as

(0 = (uy - v/x) (11)

Equation (10) becomes the vorticity-transport equation,

ao/at = -u aco/ax - v acolay + -o(a 2/ax2 +a 2/ay2)

or

a(0/at = -V * (Vco) + j)V2C0 (12)

In three-dimensions, the vorticity vector is defined by

co = V x V (13)

If V = V(x,y,t), the vorticity vector is perpendicular to the gradient of V and reduces to one

component coz, the negative of the present definition.

Eqauation (3), the continuity equation, is satisfied by the direct substitution of a stream

function xV(x,y,t) defined by

u = a/ay , v - /Ox (14)

Therefore, the continuity equation is replaced by stream function and the number of independent

variables reduces to one. Combining Equation (11) and (14) yields the Poisson equation

Co = a2jV//X2+ a2V/Dy2 (15)

The vorticity-transport equation is parabolic and poses a mixed initial- and boundary-

value problem in which the solution is computed by marching outward from some initial

condition while satisfying the boundary conditions. The equation is nonlinear because u and v

are functions of the dependent variable through Equations (14) and (15). The stream function

equation, Equation (15), is elliptic and poses a boundary-value problem which is solved by

specifying the boundary conditions on a complete contour enclosing the region.
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As a result of the change of independent variables which replaced the velocity

components with vorticity and stream function, the Navier-Stokes equations separate into one

parabolic equation (the vorticity-transport equation) and one elliptic equation (the Poisson or

stream-function equation). Therefore, only one transport equation needs to be solved.

2.2.3 NONDIMENSIONAL FORM OF TH-E EQUATION

The normalizing system used to nondimensionalize the governing equations and

boundary conditions is based on airfoil chord c and freestream velocity U_,. The dimensionless

variables are defined by

U = u/U*-, v = v/U**

x = x/c, y = y/c

(0 = co/(Ujc) (16)

v= V/U~c

t = t/(c/U,,)

Substituting these variables into Equations (12), (14) and (15) and rearranging yieids

Do/t + u~u/Dx + v~u/Dy = (1/Re) (a2CO/ax2 + a2(o/ay2) (17)
0= (a2w/ax2 + a2W/ay2) (18)

u = a3/ay, v = - a-t//ax (19)

where Re is the dimensionless Reynolds number defined by

Re = U-)c/ (20)

Thus, by nondimensionalizing the governing equations, the flow is characterized by one

dimensionless parameter, the chord Reynolds number.

2.2.4 TRANSFORMED EQUATIONS

In the physical plane (x,y), grid points will be moved in time in response to the

developing solution in order to concentrate grid points in regions of large solution variation.

(See Section 2.4.) In order for all numerical computations to be done on a uniformly spaced

grid, the gcverning equations and boundary conditions must be transformed from the physical

plane (x,y) to a computation plane ( ,TI) which will be fixed in time and where ( ,Tl) are

curvilinear coordinates. The general transformation of the physical plane to the computational
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plane is given by

= (x,y), rj = 71(x,y) (21)

and the inverse transformation is given by

x = x( ,Tl), y = y(t,r) (22)

Derivatives are transformed as follows (see Anderson, Tannehill and Pletcher, 1984):

f. = (Yn f, - yt 01/ (23)
fy = (-x n ft + xt fn)/J (24)

f. =[yn2ft - 2y yf n + yt 2fnn]/J 2 + [(x.Nf - x~fn)(yn 2y - 2y Yjyny

+ y 2ynn)+ (-ynft + ykfq)(yn 2Xt - 2y yX n + yex2xn)]/J3  (25)
fyy =[xN2ft - 2xtXnft + x2ff, 1]/J2 + [(Xnf t - Xtf)(xn2yt - 2xtxny

+ x 2ynn) + (-y'ft + ytfn)(xn2x - 2x~xnytn + xt2ynl)]/J3 (26)

ft = (-Ynxt + xnyt) ft/J + (-ykx - xvyt) f./J + f(,11) (27)

where J is the Jacobian of the transformation

J = @( ,T)/a(X'y) = (xy n - Xny) (28)

In a two-dimensional problem, the Jacobian of the transformation controls the magnification of

area elements between the physical and computational planes (Anderson, Tannehill and Pletcher,

1984). In order for the transformation given by Equation (21) to be nonsingular, which insures

that a one to one relationship exists between (x,y) and ( ,i1) the Jacobian must be nonzero.

Substituting Equations (23) through (27) into Equations (17), (18) and (19) yields:

Vorticity-Transport Equation

0, + W [yI(u-x1) - xN(v-y)]/J + 0n [-yt(u-xt) + xt(v-Y)]/J =

[cCI + + ato)' - 213can + yOn]/(ReJ2) (29)

Stream-Function Equation

tv - 213n + 'Tn, + WV + own = J2CO (30)

Velocity-Component Equations

u = (-xNVt + xiV1 )/J (31)

v = (-Yv + YVN5)/J (32)

where

a=xn2 + y 2  (33)

13 = Y Yn + xxn (34)
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, = x42 + y42  (35)

't = (-y, (Dx) + x,(Dy))/J (36)

a = (y, (Dx) - x (Dy))/J (37)

Dx = ax - 2 3y , + x% (38)

Dy = Utyk - 2r jy + "YYWq (39)

Equations (29) through (32) are solved numerically on a uniform rectangular computational

plane. Therefore, the movement of a grid point in the physical plane results in a change of the

physical coordinate (x,y) at the corresponding fixed grid point (4,T1) in the computational plane.

The computational approach is applied in the immediate vicinity of the separation

bubble. In this region it was assumed that the body surface can be represented by a flat plate.

Modifications of the proposed numerical method could be made to include curvature by

expressing the governing equation in normal coordinates. The remainder of the flow field is to

be "patched" to the Navier-Stokes solutions by means of appropriate boundary-layer theory and

inviscid-flow analysis.

2.3 COMPUTATIONAL SCHEME

The procedure for solving Equations (29) through (32) starts with the establishment of

initial values of vorticity, stream function and velocity components everywhere at time t = 0.

Then the vorticity-transport equation is advanced through time using a finite-difference

representation of Equation (29). The vorticity field then serves as a forcing function in Equation

(30), which is solved numerically for the stream function. The coefficients, u and v, in the

vorticity-transport equation are computed by a finite-difference representation of Equations (31)

and (32). This procedure is repeated until the desired time is reached or until some accepted

convergence criteria for a steady-state solution is satisfied.

2.3.1 VORTICITY-TRANSPORT EQUATION

The computational scheme used to solve the vorticity-transport equation is an alternating-

direction-implicit (ADI) method for parabolic equations based on that of Peaceman and

Rachford (1955). The advancement of Equation (29) over a time step index At is accomplished
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by splitting a finite-difference algorithm into a sequence of one-dimensional operations. The

following equation approximates Equation (29) for the first half time step:
(C,n+lfl_(j)..n)/(l/2At) + [u8y/811 - V8X/8ri] 8co..jn+1/ 2/8t + [-u8y/5t +

V8X/8t]Cji oni5Ti = (Rej 2j~-' [+1 (y, j n+I/2/8n/+71 +

C i820jn11/82- 2Pj20j/tj + y82C0.n/8,q2] (40a)

The equation for the second half step is
(C0,jn+Lo0,.n+Ifl)I(1/2At) + [u8y/5T1 - V8X/8T1] 8oj),n+1f2/8t + [-U~yI5t +

V5X/8t]5On+I/5Tl = (Rej 2
1 j )-I [t 8icoijn+1/2/84 + CFCj+/- +

C~ij82o),jn+1fl/8t2 - 2Pj2jj+/ 1 + yj~82(), n+/8112] (40b)

where the central finite-difference operators 8 and 82 are defined by

U/t= (f'+uj - fj~1j)/(2At) + O(A 2) (41)

80j= (fij+l - f1j~1/(2ATj) + O(AI 2) (42)
(82f/8t2) =(fi+Ij - 2f1 j + fj~jj)/(2At 2) + O(At 2) (43)

52f/8712 = (fj~+l - 2 f1 j + fjj~.9/(2Ar1 2) + O(ArI 2) (44)

52fI88T- = (fi+lj+l - fi+lj-l - fi-uj.t + fj~j1 )/(4AtA11) + O[(A4)2,(Ar1)2 ] (45)

The notation of subscripts i~j denotes the position (t,ri) and superscript n denotes a particular

time t:

f,,n = f(t = jAt, rl = iAi, t = nAt)

with mesh size (At, A71, At) (46)

The coefficients aj, Pij yij T,i and (Ti are computed as follows for interior grid points (i =2,M-

1), and j =2,N- 1):

0.j= 82X/8112 + 52yI8T12  (47)
P = 8Y/8 t 8yI8TJ + 8X/8t 8X/8rI (48)

Y.j = 1..) 8 y/~ (49)

,rj= (- 8y/ddI(Dxij) + 8x/5Ti(Dyjj))/Jjj (50)
aj= (8yI8t(Dxjj) - 8x/5t(Dyij))/Jij (51)

where
Dxij = cqj 82X/8t2 - 2 PRj82X/5t 8T1 - YIj 82XI5,,12  (52)
Dyij = % 82y/ 8 t2 - 2pi 82y/8r8Tl - yj~82yI8-n2 (3

iJ ~= 8X/6 8y/5ri - 8XI8TI BY/ 8 " (54)

On the boundaries, backward and forward finite-differencing formulas were derived using a
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cubic Lagrangian interpolating polynomial.

Equation (40a) contains implicit unknowns oi. ,'I 2 , 0 ijnI ,2 and ci +l, n+I2 while Equation

(40b) contains implicit unknowns ij,1in+1, f.), n+1, (oijl n+l . Thus, the result of splitting in the ADI

method is that only tridiagonal systems of linear algebraic equations need to be solved. A

technique for rapidly solving a tridiagonal system of linear algebraic equations is due to Thomas

(1949) and is called the Thomas Algorithm. In this algorithm the system of equations is put in

upper triangular form and the unknowns are computed using back substitution.

The grid speed terms x, and y, were dropped in the finite-difference representation (40) of

the vorticity-transport Equation (29) because the grid points in the physical space will only

change at selected time steps. Since the influence of the motion of the physical grid points is

registered through the grid speed terms, interpolation must be used to transfer the values of

vorticity, stream function and velocity components from the old grid to the new. This was

accomplished by cubic-spline interpolation.

According to a von Neumann stability analysis, the ADI method applied to the linearized,

two-dimensional vorticity-transport equation (nontransformed) is unconditionally stable for all

time steps. However, Roache (1972) points out that the implicit wall boundary values of

vorticity actually give a time-step restriction which depends on the physical problem and the

convergence requirement.

The ADI method as applied to the vorticity-transport equation has a truncation error of 0

(At2, A 2, A11 2). The full second-order accuracy of the method can be deteriorated by the

evaluation of the nonlinear terms. In Equation (40a), u and v should be evaluated at (n+l/2) and

(n), respectively. While in Equation (40b), they should be evaluated at (n+l/2) and (n+l). Since

u and v are calculated from x, which is obtained from the stream-function equation, this

procedure would require the implicit coupled solution of co and V' at both (n+1/2) and (n+l),

which is not feasible. In this study, the nonlinear coefficients u and v were re-evaluated during

each time-iteration cycle, thereby converging along with the wall vorticity.

2.3.2 STREAM-FUNCTION EQUATION
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The solution of steady elliptic equations by iteration is analogous to solving a time-

dependent problem to an asymptotic steady state (Frankel, 1950). Therefore, the stream-function

equation, Equation (30), was solved by the ADI method for elliptic equations as described by

Peaceman and Rachford (1955). The iteration is performed first implicitly by rows and then by

columns using the following difference equations:
XVijq+1/2 = ijq + At/(2A4ATA) [czij A l/A 62 5 + 112- 135y12 2 q +

yij AW/Aj 8,2XIfq + rijAr/2 T ,28q+l/2 + ai/2 A 8Tjq - A AI2Jij, jii](55a)

flijq~l = y jq+1/2 + At/(2AtAri) [Cj1 ATI/A 52 Wq+l/2 - P3.j/2 8tn2yq+1t 2 +

yij A /ATl 8, 2Vq+' + tijA/2 5Xq+fl2 + arJ2 A ryq+1 - A Ajj 2 Jij, mik](55b)

where

8v = 4+l, - Vi-ij (56)

8nV Xj+1 - Nij-1 (57)

5=2k Wi+j, - 24fij + Vi-Ij (58)

82 = ij+I - 2yij + '4fid-1 (59)

82 = Vfi+lj+l - 4+ild-1 - li-I j+i + vi-j-1 (60)

and q is the iteration index.

The equations may be written in the following form, after multiplying by p = 2A Ar/At:

Nfilj q+l /2 (ti,jAri/2 - cxj Ar/A ) + yijq+l/2 (p + 2cxjArj/A ) +
.i+ljq+1/2( - tAi/2 - iAj r/A ) = pyijq - A4AnJia2Ojid +

yijA/ATl (812 q) + GjA .J2 (Sn7ftq) - 13j2 (8n~2vq) (61a)

Vij-Iq+l (ai,jA2 - yijA rWA) + VWq+ l (p + 2yVjA/Arn) +

Vij lq+l ( - yijA .2 - yjA -An) = py/jq+l 2 - aAATJd2Oij +

cLiaAi/A (5 2 ,1q+1/2) + rijAT/2 (5&Ntq+l/2) - P[J2 (68t.24fq+1/2) (61b)

The parameter p is a positive parameter chosen to accelerate the convergence of the method and

to insure diagonal dominance in the tridiagonal matrix.

2.3.3 U-V COMPONENT OF VELOCITY

The velocity components, Equations (31) and (32), are computed from the following

finite difference approximations:

uij = [-XnNl + x Vn]/Jid (62)
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vij= ['Ynv + Y4T1/Jiji (63)

where for i=2, M- I and j=3, N- i

Wt = (,4i+ j - Wiqjj)/(2A,) (64)

Nn = (fi+ij - 1,-1)/(2ATj) (65)

and for i=2, M- 1 and j=2

W = ('li+l, - NfV.jj)/( 2 A ) (66)

xIfT1 = (-5wi,1 + 4i,2 + XVi, 3)/(4A11) (67)

Equation (67) will be derived in Section 2.3.4.

Along the downstream boundary and outer-flow boundary, three-point backward-

differencing formulas are used. For example, for i = M, j = 3, N- 1,

V = (3 jM~ - 4 WVM-I + WtM_2,)/( 2A ) (68)

Nll = (xVij+l - Wij-.)/(2ATr) (69)

2.3.4 BOUNDARY CONDITIONS

As discussed above, the computational approach of the problem does not take into

account the entire flow field, but limits the domain of the solution to the immediate vicinity of

the separation bubble. Therefore, the specification of boundary conditions is important in order

for the "patching" of the Navier-Stokes solution to the remainder of the flow. Boundary

conditions need to be specified on: (1) the solid wall, (2) the upstream boundary, (3) the outer-

flow boundary, and (4) the downstream boundary.

Upstream Boundary

It was pointed out in Geibler, Carr & Cebeci (1988) that for oscillating airfoils the front

stagnation point is moving in time. Therefore, the boundary-layer calculations neeJ to be started

at the instantaneous positions of the stagnation points which are known from the inviscid

calculations of Section 2.1. Since this work only considers small-amplitude oscillations, it is

assumed that the unsteady effects in the boundary layer in the region near the stagnation point

are negligible. Therefore the upstream boundary conditions were obtained by the solution of the

two-dimensional laminar boundary-layer equations on a quasi-steady basis. The modification to

include stagnation-point motion as in Geibler, Carr & Cebeci (1988) is straightforward.
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The two-dimensional boundary-layer equations are:

Du/Ds + avIy = 0 (70)

uau/Ds + vaulay =Ue dUjds + U j)Ua(71)

with the boundary conditions

U(s,Y = 0) =v(s,y = 0) =0 (72)

u(s,y - o Ut(S) (73)

u(s = 0, y) =j (74)

Introducing the Falkner-Skan-like variables

=S, T1 = y [ V(ReUe() -r (75)

u Ue ( ) r ( ,rj) (76)

V(4,Tj) = v [ReW/U( ) ]"'2 (77)

where s is the dimensionless distance measured alongC the surface of the airfoil, y is the

dimensionless distance normal to '.hie surface and the prime indicates differentiation with respect

to T1.

We rewrite Equations (70) and (71) as

arila + JPf' + 71/2 (0-lI)DraT1 aV/D&q = 0 (78)
faf/ + Vafl/01rj = [1-f'2]0 + a 2f/ 2  (79)

where I3( ) = x/Ue dUe/d (80)

and V V+ilfC(-1)/2 (81)

The boundary conditions transform to

f-(,0) =0, V( ,0) = 0 (82)

r - oo ) = 1 (83)

C,(0,rl) =fi'(rl) (84)

Equations (78) through (84) are solved using the Crank-Nicolson method described in

Panton (1984) with initial conditions supplied by the Falkner-Skan profile of Pi= 1, the plane

stagnation-point solution. It should be noted that ,rj defined in Equation (75) are not related to

the curvilinear cordinates ( ,rl).

Solid Wall
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Along the wall, ' = 0, which implies the no-penetration condition, v = 0. The no-slip

condition

ui: = J-1 (xty) L, = 0 (85)

is also applied at the wall.

At the wall the stream-function equation reduces to

Oi = y j-2 VrI I 'wall (86)

Equation (86) does not provide a direct boundary condition for vorticity, and the accepted

procedure is to calculate the vorticity from Equation (86) using a difference formula which

implicitly satisfies Equation (85) (Briley, 1972). To derive such a formula, a cubic Lagrangian

interpolating polynomial is passed though the points (i,O), (i,1), (i,2) and (i,3). The formula for

this cubic is

Vi = [-(01 - Tl )(T1 - T12)(1 - 1l3)M/.o + 3(rj - 1o)(7 - r 2)(1 - Tj 3)4fi I -

3(1" - 1i0)(Tl - 711)(Tj - T13)Nfi,2 + (T - T)(11 T )(I1 - T12)Vi.3]/[6(ATj3)](87)

where TIk denotes Tj at the point (i,k). Differentiating Equation (87) with respect to 11 gives

a'/fari = { [-3%l + 2(TII + T12 + 113)11 - (MTi1T2 + 1T13 + Ti2T13)]V i.O +

[9 T 2 - 6(TIo + T12 + 113)1l + 3010712 + T1o13 + Ti2Ti3)]Vil +
[-9T12 + 6 (TIo + T1 + T13)TI - 3 (11o7i + TIoT13 + T1T13)]i,2 +

[3112 -2("10 + TI, + T2)r + (MOT1 + 71oT2 + ITi1T)]Vi.3 }/[6(ATi3)] (88)

Differentiating Equation (88) with respect to Ti gives
a 2 Xfi/OTl2 

= {[-6Ti + 2(ril + T12 + T13)]fi,O +

[18rl - 6(rlo + T12 + Ti3)] i.1 + [-6TI + 6 (TIo + 71, + 713)]Wi.2 +

[6Ti - 2(0io + TlI + T12)]1li. 3 }/[6(ATj3)] (89)

Evaluating Equation (88) at Tl = l I = Tl,,,, gives

aW4/TjI i.,,.ua = (-2Wifo - 3yi,I - 6Vi,2 - Xii. 3)/[6ATi] (90)

Evaluating Equation (89) at Ti = Ti = Ti,., gives

a2V/T-q2 I iwal = (Wi,0- 2/i.1 + i.,2 )/[ATi2] (91)

The no-slip condition is now

ui,wall = x /J DW'/aT I iwal = x(-2Wi.O - 3 Vi., + 64fi.2 - Vi.)/[6JAri] = 0 (92)

The difference formula for vorticity at the wall is calculated by eliminating V at the point

(i,0) from Equations (91) and (92), and substituting (91) into Equation (86). The result is
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(0i., =- (- 7'i.1 + 8yiJ2 - Wi. 3)/(2AT12 Ji.12) (93)

To be consistent, the same cubic, Equation (87), should be used to derive a second-order

difference approximation for 4T and n, at the point (i,2). Setting 7l = T12, Equations (88) and

(89) become:

a1/Jar I i,2 = (ViO - 6Vi,l + 3Wi,2 + 2Wi.3)/(6Ail) (94)
a 2 W/01]2 1i,2 = (Ni,l - 2 Wi,2 + Vi. 3 )/ATI2 (95)

Eliminating 14 at the point (i,O) from Equation (92) and (94),

aylaTl Ii,2 = ( 5Wi.1 + 4 yi,2 + Wi.3)/(4ATI) (96)

Equation (95) is identical to the standard central-difference formula obtained using Taylor-series

expansions or a quadratic polynomial. However, Equation (96) is not consistent with Equation

(42). Therefore, at the row of points adjacent to the wall, Equation (96) should be used to

represent the coefficients uij and vij in order to be consistent with the treatment of the vorticity

boundary condition at the wall.

Lagging of vorticity at the wall arises with an implicit method because the boundary

values of vorticity at the (n+l) time level are needed to solve the vorticity equation before the

stream-function values at this time level are available to eliminate them. This problem was

solved by using the wall values of vorticity at the (n) time level as boundary conditions for the

vorticity equation at the (n+l) time level. Then, after the stream function has been calculated at

the (n+l) time level, the values of wall vorticity are updated by Equation (93). This procedure

was continued in an iterative manner over the time step.

Outer-Flow Boundary

At this boundary, the u-component of velocity is prescribed by the unsteady inviscid

calculations of Section 2.1. The application of Equation (61) requires values of V at an

imaginary row of points just outside the boundary. The values are eliminated by solving the

following finite-difference representation of the prescribed values of u for 4fiN+1.

Ui.N= [- X,(Wi+IN - Wi-lN)/(2aQ ) + X(Wi,N+1 - W,..)(2.'I)]l

Ji.N, (i = 2,M-1) (97)
u'N = [ -xfl(34MN - 4S,,,. + Wk1.2\)/(2AII) + x(S.,,'N+I -

a.N,'-1)/(aArl) ]/JMNx (98)
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The flow is also required to be irrotational by setting the vorticity equal to zero.

The boundary is located at a distance y,

Ye = TILj*i/(P.U( ))],/, (99)

where ri = c is taken to be the finite position il = 8, and j is the location of the upstream

boundary.

Downstream Boundary

At this boundary it is assumed that a fully rehabilitated boundary layer exists. Therefore,

the boundary conditions are given by the boundary-layer approximations

a2./aX2 = D2 o0/DX2 = 0 (100)

These boundary conditions must be transformed to the computational plane by Equations (23)

through (27). The equation governing the vorticity boundary condition is

yn 20 - 2y~ync0o4 + y 2 oun + [(x-ot. - xko,)(y. 2 y - 2ytny~y n +

y 2yrl) + (y tO1. - y tw)(y'12X4 - 2x4nyy n - yt2xn,)]/J = 0 (101)

The finite-difference form of Equation (101) is then

0)aM+1j(1 + DxnAV[2AJ] - Ey,/[2AJ])M j = 2coMj(1 + CA 2/[AArl2])Mj +

OM.I(DxnA /[2AJ] - EynA j[2AJ] - 1)M1 - (CA2/[AA12])Mj

(cOMj+1 - WMj-1) + (BA /[2AAn])Mj (wt,)Mj (102)

where

AMj = (yn) 2  (103)

BMj = (y ,Y) (104)

CMj = (y ,) 2  
(105)

DMj = AMj(yk,) - 2 BMj(yk,) + CMj(ynn) (106)

EMj = AMj(x ) - 2BMj(xn) + CIJ(XAnn) (107)

(cO )MJ = (9COMi - 12coM.Io + 3C)M-2j) + (-12c0Mj. + 16cM.1j., -

4c0M2j.I) + (3OMj.2 - 4 coM-Ij.2 + -OM.2j.) (108)
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The equation governing the stream-function boundary condition and its finite-difference

form is obtained by replacing o) with V in Equations (101) through (108). The application of

Equations (40) and (61) at the downstream boundary requires values of vorticity and stream

function at an imaginary column of points just outside the boundary. These values are

eliminated by solving Equation (101) for wM+lj and similarly for WM~lj.

2.4 ADAPTIVE-GRID GENERATION

When partial differential equations are solved using a fixed grid, the grid points are

distributed before the solution is known. Therefore, the grid may not be best suited for the

physical problem because of the possibility that large solution variations could appear

somewhere on a scale that is too small for the prescribed spacing of points. The basic idea of the

adaptive grid used in this study is to have points move from regions of relatively small solution

gradients to regions of large gradients as the physical solution evolves. In this approach, there is

no formal increase in global accuracy in the limit of infinitesimal spacing, but it is possible to

improve the approximation locally as significant gradients are better resolved (Kim &

Thompson, 1988). This approach has not only the advantage of not increasing computational

time and storage during the solution, but also the undesirable possibility of decreasing the

number of points in other regions of possible significant gradients. In addition, the grid could

become too skewed. In this report only one-dimensional adaptation will be described in the y-

direction. However, a direct extension to multiple dimensions can be made in a robust,

straightforward manner. (See Shen & Reed 1990a-b.)

Adaptive redistribution of points traces its roots to the concept of equidistribution. In one

dimension, equidistribution occurs when the spacing between points is inversely proportional to

a weight function. The mapping of a uniform distribution in r1 into a nonuniform distribution in

s, where s is the arc length along a given curve, is determined by the differential statement,

wds = cdri (109)
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where c is the constant of proportionality and w is the weight function. The desired spacing is

achieved because drl is viewed as a constant, therefore, the physical mesh increment ds is small

when w is large, and vice versa.

2.4.1 ADAPTATION OF THE BOUNDARIES

The grid points on the upstream and downstream boundaries were moved adaptively

based on a faction method by Eiseman (1987). The form of the weight function used to move

the grid points on these boundaries is given by the linear combination

w = 1 + cIMI + c2 M2 +... + cmMm, (110)

where the nonnegative functions Mk are the magnitudes of quantities which attract points when

they are large and have nonnegative coefficients ck to indicate the level of importance attached

to them. Smoothness of the grid is provided by the choice of unity for the first term which

guarantees that the weight function is never zero. When w is a function of s, a direct integration

of (109) leads to the transformation

(11 - 'min)/('lmax - 7imin) = F(s)/F(Sma) (111)

where

F(s) = Jwds (112)
Smin

With the general linear weight of Equation (110), the integral of (111) becomes

F(s) = Ho(s) + CkHk(s) (113)

where
s

H0(s) = s-smin, Hk(s) =5fMkdx (114)

Upon evaluation at s = sma, Equations (113) and (114) become a relationship between total

amounts with the total length,

L = Ho(sm) - sm - Smmi (115)

and the total amount of each quantity

Ik = Hk (S.-a) (116)
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The application of Equation (111) requires a curve given as a function of a parameter s

and then a new parameter rl which is also expressed as a function of s. In terms of mapping, the

relationships become the map from an interval of values of s to the curve and the map from the

same interval to the interval for T1. The latter map is backwards with respect to the straight

composition of maps, which is from i" to s and then to the curve. Therefore, the map of (111) is

called the backward global integral statement (Eiseman, 1987). A consequence of the

backwardness is the need to invert the transformation in order to apply it. The inversion is

accomplished by interpolating previous grid points using cubic-spline interpolation. The total

weight integral is given by

F(Sm,,) = L + c1ll +... cmlm (117)

Since each term is positive and represents a part of the total weight, a division by the total weight

results in the factional decomposition,

1= f0 + f, +... +fm (118)

wheref 0 = L/F(s) (119)

is the fractional contribution from the total length and

fk = CkIk/F(Sm,) (120)

is the factional contribution from the total amount of the kth quantity. The strategy is to specify

the fraction of (120) and then solve for the resultant Ck. Equations (119) and (120) give the

weighting coefficients,

Ck = Lfk/[(1 - f, - . . m)k] (121)

When these coefficients are used in the integral F(s) of (113), the backward global integral

statement of (111) becomes

("1 - rlmin)/(Tlmax - T1min) = Z fk HS)/k(Smax) (122)

This study only considered m = 1, for which Equation (122) becomes

71(s) = 1lmm, + (7imax - timi)[(1 - f,)Ho(s)/Ho((sm.) + fiH2 (s)/Hj(smx)] (123)

where
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H1(s) = fslM 
1 dx (124)Smin

2.4.2 ADAPTATION OF INTERIOR GRID POINTS

Based on the grid distribution aiong the upstream and downstream boundaries obtained

from the one-dimensional adaptation described in Section 2.4.1, the interior grid points in the y-

direction are moved adaptively according to the control-function approach. This approach is

developed by noting the correspondence between Equation (109) and the one-dimensional form

of the elliptic grid-generation system (Kim & Thompson, 1988). The one-dimensional form of

this system is

+ Qy'9 = 0 (125)

where Q is the control function which provides some measure of control over the interior grid

spacing. Differentiation of Equation (109) with respect to r1 and setting y = s yields

wy n + whny = 0 (126)

Then, from Equations (125) and (126)

ynn/yn = -Q = - wn/w (127)

Thus, the control function is given by

Q = Wn/W (128)

The direct extension of the above derivation into two dimensions is as follows: In two

dimensions the elliptic system of equations is (see Thomas & Middlecoff, 1980)

ctx - 23x + yxnn = -J2(Pxt + Qxn) (129)

ay - 20yt, + yy'an = _J2(pyt + Qyn) (130)

where

P = (w1 )t/w - 13/c (W1)n/Wl (131)

Q = (w2)n/w2 - J3/Y (w2)/w2 (132)
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with a, 03, y, and J defined in Equations (28) and (33) through (35). P is also a control function.

Since the grid points will be moved in the y-direction, only Equation (130) needs to be solved.

This was done by successive line overrelation (SLOR) iteration in the computation domain to

generate the grid in the physical domain. The weight functions, wl, and w2, are based on the

gradient of the u-component of velocity according to Anderson (1987).

w, = 1 + A(Du/a)2 (133)

w2 = 1 + B(au/Orl)2 (134)

where A and B are constants which are adjusted to alter the adaptivity in the mesh. The unity

term is added to prevent excessive mesh stretching where the values of the gradients vanish.

The control function adaptive approach has the advantage of being based on the same

elliptic generation equations that are commonly used in grid generation codes. Two separate

weight functions could be a definite advantage, with the possibility of using the velocity gradient

in one direction and the pressure gradient in the other.

2.5 ALGORITHM

A summary of the algorithm which advances Equations (29) through (32) from (n) to the

(n+l) time level is as follows:

(i) Obtain boundary values for Wy+1, Y+1 or their derivatives. These values are

known except for on+' at the wall.

(ii) Solve (40a) and (40b) to obtain Conl.

(iii) Solve for xr'1 using the iterative scheme given by (61a) and (61b).

(iv) Compute un 1 and vn i from NfnWl using three-point central differencing.

(v) Calculate new values for Con+' at the wall using (93).

(vi) Return to Step (ii) and repeat this procedure until the values of Con+1 at the wall

computed in Step (v) converge.
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The above algorithm requires convergence criteria for Steps (iii) and (vi). The wall

vorticity was used as the test quantity in both criteria. After each application of Equations (61a)

and (61b) in Step (iii), values of vorticity at the wall were computed by Equation (93). The

iteration was stopped when

max l(wn+I)q+1 - (o i)+I)q Iwalmax {(Won+)q+! 'wall - £1 (135)

where q is the iteration index in the procedure for solving the stream-function equation. In Step

(iv), a similar criterion was used for the iteration over the time step. The iteration is stopped

when

max I(O)y1+)k+ l - (o yI)k+l jwaj(max(0+I)k+1 1wall <£2 (136)

where k is the iteration index for the iteration over the time step. The advantage of using

vorticity at the wall in the above convergence criteria is that P- and £2 are related to one another.

In order for the time-step iteration to converge, el should be less than £2. The present

calculations were made with el = 1/262 in accordance with Briley (1971). A solution was

accepted as the steady-state solution when the following condition was satisfied:

mjma - (n I~/max IOn+ Iij < -3 (137)

3 RESULTS

3.1 STEADY HOWARTH RETARDED FLOW

In this case, at the upstream boundary, the vorticity and stream function are prescribed

from the boundary-layer theory of Howarth (1938) for a linear retarded freestream velocity given

by

ii(x) =b 0 - b,- (138)

where bo has the units of feet/seconds and b, of I/seconds. Following the procedure of Briley

(1971), the separation bubble was produced by retarding the freestream in accordance with

Equation (138) from the upstream boundary to a point slightly downstream of the expected

separation point. Thereafter, downstream, a constant freestream velocity is prescribed. This

reverses the growth of the separated region and eventually causes reattachment.

The governing equations and boundary condition from above were made dimensionless
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in accordance with the nomenclature of Howarth (1938).

x = blb 0, y = bfy/bo

u = u/bo, v = V/b0

(j) = 1//b 0bl f2 (139)

V= iibI 
1 /b 0 ulfl

t = tb1

Substituting Equation (139) into Equations (12) through (15) and then transforming them into

the computational plane by Equations (23) through (27), the nondimensional form of the

governing equations are:

Vorticity-Transport Equation

ot + (o[yn(u-x1) - xn(v-yt)]/J + wj'[-t(u-xt) + x (v-yt)]/J =

(p4 + aro + cp- 2pco + yO,,)/[ReJ2] (140)

Stream-Function Equafion

agtt - 2pfN iq + Wyll + TV + oV'j = J2Reco (141)

Velocity-Component Equations

u = (-xN N + xNfsN)/[4Re J] (142)

v = (-ynVw + yxV)/[4Re J] (143)

where the nondimensional Reynolds number is defined by

Re = b0
2/[blu] (144)

and the nondimensional form of Equation (138) is

u,(x) = 1 - x (145)

Calculations are presented for two freestream velocity distributions representing two

different Howarth retarded flows; that is, two different constant downstream velocities are

specified for the problem

Ue(X) = 1-x X1 < X < X d (146)

Ue(X) = 1-Xend Xcnd < X < X2

Initial conditions for u, v, co and xV were obtained from the Blasius similarity solution of the
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boundary-layer equations for flow past a flat plate parallel to a uniform freestream. Values of

the convergence criteria discussed in Section 2.5 are eI = 5 x 104 and E3 = I X 10-7.

The nondimensional form of the wall shearing stress is

,t 1 = (4Re J)-1 (x~u ) 1L, (147)

In Figures 2 and 3, distributions of wall shearing stress along with the freestream velocity

distribution are given for values of Xed equal to 0.16296 (solution 1) and 0.20058 (solution 2).

Solution 1 (Figure 2) did not separate, whereas solution 2 (Figure 3) produced a separation

bubble which appears as negative wall shearing stress.

Figure 4 shows a vorticity profile downstream of the separation bubble at x = 0.40122.

Briley (1971) points out that the presence of this additional inflection point in the vorticity

profile indicates that the diffusion has not had a sufficient distance over which to smooth the new

vorticity being generated at the wall with the vorticity being convected and diffused from further

upstream.

To validate the downstream boundary conditions, the u-component of velocity at the

downstream boundary was compared to the Blasius profile. This comparison is shown in Figure

5 for the solution near separation and in Figure 6 for the solution which contains the separation

bubble. Moreover, when the domain is lengthened in the downstream direction, the solution

within the domain is unaffected. All the above results are in good agreement with Briley's.

In solution 2, separation occurred without any evidence of the singular behavior found in

solutions to the boundary-layer equations when the external velocity distribution is prescribed.

As already discussed, this singular behavior did not occur because the complete Navier-Stokes

equations were solved which include the elliptic terms associated with upstream influences that

are are not included in the parabolic boundary-layer equations. Because the Navier-Stokes

equations are elliptic in the spatial variables, their solutions satisfy all boundary conditions

simultaneously. Therefore, a perturbation in a boundary condition, such as freestream velocity

downstream of a given point, will affect the solution upstream of that point.

3.2 UNSTEADY HOWARTH RETARDED FLOW



H.L. Reed: Low-Reynolds-Number Aerodynamics (ONR) page 219

We next considered the case of oscillations about an established steady Howarth retarded

flow. The wall shear-stress distribution is shown in Figure 7 where the freestream velocity is

given by

ue(x)=l-(1-0. lcos(2irt))x xl+l x<Xend (148a)

ue(x)= 1-(1-0.1 cos( 2 nrt))xend Xend<X<X2 (148b)

and is denoted by a solid line. The initial conditions are obtained by the steady-state solution,

t=0, where the freestream velocity distribution is denoted by a line of asterisks. Five complete

cycles were required for convergence. Figure 8 displays the velocity profiles, the "separation"

line, the edge of the region of reversed flow and the boundary-layer thickness for a Reynolds

number of 20,833.

3.3 UNSTEADY 2-D AIRFOIL FLOW

This work includes the epplication of this technique to the ASM-LRN-010 and

Wortmann FX 63-137 airfoil sections at 50,000-500,000 chord Reynolds number. Inviscid

surface pressure distributions for pitching and plunging airfoils (as computed from the vortex-

lattice code) are applied as outer-flow boundary conditions in unsteady calculations as described

above. An unsteady boundary-layer solution is applied as the upstream condition.

Figure 9 shows the contour of the Wortmann airfoil. For a chord Reynolds number of

125,000 and at an angle of attack of -10 degrees, Figure 10 shows the inviscid, panel-method

prediction of both upper and lower surface Cp. Also shown are the resulting Navier-Stokes

calculations of surface Cp. Here the viscous pressure coefficients were calculated by evaluating

the x-momentum equation at the wall, with the results of

aCp= 2 1 (149)

x--qR~e'd wall

In this case, no separation is observed, as seen from shear stress calculations in Figure 11.

Figures 12-13 show similar results for a chord Reynolds number of 250,000.

For a chord Reynolds number of 125,000 and at an angle of attack of 0 degrees, the

boundary layer on the upper surface separates and the Navier-Stokes calculation for Cp differs
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from the inviscid calculation (see Figures 14-15). These results agree well with the experiments

of Wu & Covert 1989 (see their Figure 3), except for the fact that our calculation is laminar and

does not include transition, and therefore our bubble reattaches further downstream. Our force

predictions are therefore more conservative. Figure 16 then shows the extent of the separated

region relative to the boundary layer.

Further detailed results, including the prediction of temporal separation development and

whether gusty off-design conditions are fatal to the vehicle, are found in Reed & Toppel (1990).

Steady conditions include the Wortmann airfoil at -10', -40, 00, and 4' incidence. Gusting

conditions include two types: 1) oscillatory pitching and plunging and 2) ramped to an incidence

angle, held until steady-state is achieved, released, and held until steady-state is achieved. The

ramping function is one-half of the oscillatory cycle.

The oscillation is described by the equation

W =-10 ° + 14' sin (2kt)

Here k is the reduced frequency

k = o c /(2 U0 )

co is the dimensional frequency of the oscillation, c is the chord, and U_ is the freestream speed.

Values of k studied include 0.15, 2.0, and 6.4; these were the values considered by Wu &

Covert (1989). Chord Reynolds numbers considered include 125,000 and 250,000.

Figure 17 shows inviscid CP predictions for the airfoil pitching from -10' to 00 at a

reduced frequency of 6.4. (Results for -10', -40 , and -2' are shown.) Unsteady, separation

characteristics are then predicted based on the upper-surface Cp values.
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PART 5. COMPLETED UNSTEADY 3- D COMPUTATIONAL WORK

Other work completed includes the formulation and demonstration of novel adaptive-grid

procedures for incompressible flows for both 2-D and 3-D geometries at these Reynolds numbers

(Shen & Reed 1990a-b), as well as 3-D results for 2-D base flows experiencing unsteady 3-D

freestream pressure gradients (Shen & Reed 1990c). The geometry here includes a flat plate

with unsteady 2-D and 3-D suction distributions applied on the outer boundary. The companion

experimental results can be found in Henk, Reynolds, & Reed (1990) and were described in Part

3.

The extension to three dimensions of the above discussion in Part 4 is straightforward,

but much more lengthy, and is not presented here. We do describe some of the numerical work

developed in the context of simulating 3-D unsteady, incompressible flows and demonstrated on

the well-known problem of driven-cavity flow. The idea of using Shepard's method for

interpolation in solution-adaptive procedures is described below, while the adaptive-grid

procedures developed as part of this effort are left to be found in Shen & Reed (1990b).
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1. Introduction

In the past decade, solution-adaptive methods have proven to be very powerful tools in

problems in computational fluid dynamics where large gradients exist. Compared to grid refine-

ment, the moving-grid approach has been commonly used because of its easy implementation,

especially for 3-D flows. Saltzman and Brackbill [1] addressed the difficulties of multidimensional

adaptive-grid-generation through the variational approach. Subsequently, most methods have dealt

with how to move the grid efficiently and how to choose the parameters to be specified in the

adaptive-grid-generation (e.g., Nakahashi and Deiwert [2]). Several good reviews on adaptive-

grid methods are given by Anderson [3], Thompson [4], and Eiseman [5].

During the solution-adaption procedure, the (intermediate) solutions obtained from a PDE

solver (e.g., a Navier-Stokes solver) must interact with the grid obtained from an adaptive-grid

generator. The interaction occurs either through grid-speed terms in the PDE solver or simply by

transferring the solution data from one computational grid to another, namely, remapping [5] (or

rezoning). The advantage of the grid-speed approach is that one is able to get better resolution in

time, particularly, for the implicit schemes. But, since the grid-point locations are not known a

priori, the grid-speed approach suffers from the difficulty to control coordinate singularity [5]. For

example, if local grid speeds are too large or move too rapidly during the solution procedure, the

result could be an overlapping or highly skewed grid. In contrast to the grid-speed approach, the

remapping procedure is commonly used because of its simplicity, efficiency, and numerical stabil-

ity [5], especially when steady-state solutions are the prime interest. The main purpose of this

paper is to consider how to apply the remapping step to solution-adaptive methods.

Recently, Mastin [6] presented some interpolation schemes to transfer solution data from

one computational grid to another. One of his suggestions is to first use a point-search algorithm

to find a grid point sufficiently close to Q, the point for which interpolated solution values are

desired, and then to determine a cell C which contains Q using a cell-search algorithm. Thus one
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can compute the value at Q using bilinear (2-D) or trilinear (3-D) interpolation since the solution

values at the vertices of C are known. But this algorithm suffers from two difficulties. First,

bilinear (2-D) and trilinear (3-D) interpolation can not always be applied to arbitrary quadrilateral

and hexahedral cells, respectively. Although Seldner and Westerman [7] have already given a gen-

eralization of how to apply bilinear interpolation to arbitrary convex quadrilateral cells, there is no

corresponding generalization of trilinear interpolation yet (to the authors' knowledge). Secondly,

the cell-search algorithm may fail to locate the point Q within a cell C in general 3-D curvilinear

coordinates if the faces of the cell are not planar. This is also pointed out by Mastin himself. Gen-

erally, this is a common case in solution-adaptive methods. Furthermore, the interpolant obtained

from bilinear or trilinear interpolation is only a continuous function across the interfaces between

cells. From the computational point of view, not only a continuous function, but rather a continu-

ous, smooth function across the interfaces between cells would be preferred.

Because of the importance of the remapping step in solution-adaptive methods, an interpo-

lation scheme is needed which is robust, highly accurate (at least a continuous, smooth function

across the interfaces between cells), efficient (or at a reasonable computational cost), and easy to

implement. Among different interpolation methods, the modified Shepard's interpolation [8-13] is

possibly the best candidate for solution-adaptive methods for the following reasons. First, it is

designed for scattered data (it will be shown how to apply it to a well-structured grid later) so it is

robust even when the faces of the cell are not planar. Secondly, the modified Shepard's method

used in this paper has quadratic precision [12], which is more accurate than the bilinear and trilin-

ear interpolation for 2-D and 3-D, respectively. It also satisfies the recuirement that the resulting

interpolant is a continuous smooth function across the interfaces between cells. Next, it is a local

interpolation method which makes it efficient, with the level depending on how many points are

involved in the calculation. Lastly, it is easy to implement for both 2-D and 3-D.

In the following sections, the control-function approach is reviewed first. Then the original

Shepard's method and some of its properties will be described. Following this, the modified
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Shepard's method as given by Franke and Nielson [121 is presented. In the same section, we

show how to apply this technique to a well-structured grid. For completeness, Mastin's algorithm

is also included. Finally, numerical results of 2-D and 3-D driven cavity flow are presented.

Here, we couple the modified Shepard's method with the contrcl-function approach.

2. Adaptive-Grid Scheme

Grid-generation codes based on the elliptic grid-generation equations are commonly used in

computational fluid dynamics. Since the control-function approach is also based on these equa-

tions, it is natural to consider it among different adaption strategies [14,15]. Additionally, it is

easy to add the control adaptive functions (used in the control-function approach) to those already

evaluated from the elliptic grid-generation codes in which the geometry is considered [14].

The basic idea of the control-function approach is easily explained by considering its one-

dimensional version---equidistribution. In order to reduce error the principle of equidistribution is

to move the grid such that the product of the spacing and a weight function is constant over the

points:

w Ax = constant (2.1)

where w is the weight function. If x( ) is defined as a point distribution function and t varies by a

unit increment between points, eq. (2.2) can be written as

w x , = constant (2.2)

Differentiating eq. (2.1) with respect to , one has

(w x ), -0 (2.3)

or
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xU + Px =0 (2.4)

where

P = W4 (2.5)w

Eq. (2.4) is nothing more than the one-dimensional form of the elliptic grid-generation system

[16],

g1 9 i g' + Ip, gIrk = 0 (2.6)

often used in grid-generation codes with the control function given as eq. (2.5). Here, the ele-

ments of the controvariant metric tensor, gli, are

gij i  (2.7)

It is more convenient to compute gli through gij. That is

glj = I ( gmk gn - gn gnk ) (2.8)

(i,m,n) cyclic, (j,k,l) cyclic

where gij, the elements of the covariant metric tensor, are

gij = r 'r (2.9)

The quantity g is the square of the Jacobian given as

F- ~ 2

g = det I g ii= 2 X (2.10)

In these relations, F = x i + y j + z k and { (i = 1,2,3) are the Cartesian position vector of a grid

point and the curvilinear coordinates, respectively. The control functions, Pk, are used to control

the spacing and orientation of the grid lines in the domain.
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By examining eq. (2.5) and (2.6) it is easy to extend the control functions to 3-D as

w~k

P w " -(2.11)
k w

Anderson and Steinbrenner [17,18] applied this approach to 2-D cases, then Kim and Thompson

[15] applied it to 3-D cases. Both were successful. Eiseman [51 gave a complete generalization of

eq. (2.11) as follows:

igt (wi) j

P H .~ (2.12)
j Wi

Note that eq. (2.12) involves two and three weight functions for 2-D and 3-D, respectively. Using

different weight functions in applications makes the method more flexible. For example, one can

use gradients of different velocity components as weight functions in different directions as

demonstrated in our driven-cavity-flow results in section 6.

3. Shepard's Method

Shepard [8] developed a technique for interpolating 2-D scattered data and applied it to the

fitting of geographic and demographic data. Most of the basic properties of Shepard's method can

be understood readily through the discussion of the 2-D case. Also there is a straightforward ex-

tension from 2-D to 3-D for this particular method. Thus, only 2-D interpolation is given in this

section.

Let f be a function with values fk at nodes (xk,Yk) for k = 1,...,N, and define

N N

F(x,y) = I Wk(x,y) Qk(x,y) / I Wk(x,y) (3.1)
k=1 kl

where F is a smooth bivariate interpolant with the property that F(xk,yk) = fk, k = 1,...,N. If

Wk = 1 /d and Qk(x,y) = fk, then eq. (3.1) can be written as
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" fk ' (x,y) = (xk,yk) for some k.

F(x,y)= N

fk / d /1 14d,1 otherwise. (3.2)

r 2 11/2

where g > 0, and dk =[ (x - xk) 2 + (y - Yk)2 J . It is easy to see from eq. (3.2) that closer points

have a larger contribution to the interpolant F. Note that eq. (3.2) has exactly the same form as that

found in Shepard [8].

Here, we will briefly describe some of the properties of Shepard's formula. More details

may be found from references [9,10,11]. Eq. (3.2) may be rewritten in cardinal form as

N

F(x,y) = fk Wk(x'Y) (3.3)
k= 1

where

-- f ikj '  i (x,y) = (x,yj) for some j.

Wk(x'Y) = d otherwise. (3.4)

j l

N

Multiplying eq. (3.4) by J d' W y) becomesj ' k(XY eoe

j= 1

N N N

WJ I ,J J (3.5)
j=k i j

j k j:i
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Wk(X,y) is a continuous function in the domain. This follows from the fact that the denominator

of eq. (3.5) never vanishes if the (xk,yk) are distinct.

It is clear that except for the points (xk,yk), the interpolant F constructed by Shepard's

method is analytic everywhere in the domain. Its shape depends on the values of 1. For

0 g ! 5 1, Shepard's interpolant is not a smooth function, for it has cusps or comers at the point

(xk,yk). For g > 1, the partial derivatives of F at each point (Xk,Yk) are zero which produces a flat

spot at the point (xk,yk). Shepard [8] suggested g = 2. There are other interesting properties of

Shepard's formula, a few of which are listed below:

a. It satisfies the maximum principle, i.e.,

min. fk < F(x,y) < max. fk (3.6)
l5k!5N 1 k:_N

b. F is also a constant function if the values of f are constant, i.e., if fk = C, k =

1,...,N, then F = C.

c. F is a convex combination of fk; this is based on the fact that L Wk(x,y) = 1 and
k=i

Wk(X,y) > 0 for all k.

d. Whenever the minimum of dk or the distance between (x,y) and (xk,Yk) becomes

large enough, F approaches the average of the values of fk, i.e.,

N

lim F(x,y) =1 f (3.7)
k k=I

Several defects of Shepard's method (eq. (3.2)) have been pointed out, even by Shepard

[8] himself. First, since it is a global method, the amount of work needed to evaluate F at a par-

ticular point becomes tremendous if the data set is large. This is true for most fluid-flow problems.



Secondly, the weight functions are only based on the distance of points from (x,y) and do not

consider the effect of their direction. Finally, the flat spots at the data points make the method less

attractive. In order to avoid those defects, several modifications have been suggested including by

Shepard himself [8-10,12,13]. One of the modifications of Shepard's method given by Franke

and Nielson [12] will be discussed in detail in section 4.1. Our proposed modification for a well-

structured grid is given in section 4.2.

4. A Modified Shepard's Method

4.1 Franke and Nielson's modification.

In Franke and Nielson's paper [12], Shepard's method becomes a special case of an

inverse, distance-weighted, least-squares interpolant. Again, the interpolant F is eq. (3.1), con-

veniently rewritten here as

N

F(x,y) = L Wk(x 'y) Qk(x 'y) (4.1)
k=l

where

N

Wk(x'Y) = Wk(xy) I E Wk(xy) (4.1 ')
k=1

Qk(x,y) is called the nodal function [12] since it is associated with the node (xk,yk), k = 1,...,N,

respectively. We note that Qk(X,y) approximates f at (xk,Yk) locally. In general, Qk(x,y) can be

any function that satisfies

Qk(Xk'Yk) = fk' k N (4.2)

In this study, Qk(x,y) is a bivariate quadratic function, specifically. the weighted least-squares fit at

the node (xk,Yk).
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Certain properties are required for Wk(x,y) so that the interpolant F will maintain the local

shape characteristics of the nodal functions. First, the weight function Wk(x,y) must satisfy

Wk(xjy j ) = " 8 kj, kj = 1,...,N (4.3)

Next, in order to preserve

aF (x Qk ( 44ax- (kYk) DX Wxkyk) (4)

and

y(Xk'Yk) = ' y (xk'Yk) ' k = 1,...,N (4.5)

the first derivatives of Wk(X,y) must be zero, i.e.,

aWk W_jx- (xji yj)- = y (x i yj) =0 (4.6)

It is easy to see this, since

aF N X( Q j-(
j- (xk'Yk) = I I (xk'yk) Qj(Xk'yk) + Wj(Xk'yk) a (Xkyk)

X (kY)(4.7)

and similarly for eq. (4.5). Moreover, the function Qk will be identical to f as long as f is a

quadratic function, i.e., Qk(X,y) = f(x,y), k = 1,...,N. It follows from eq. (4.1) that

N
F(x,y) = f(x,y) I Wk(x 'y) (4.8)

whenever f is a quadratic function. The last equation shows that one more requirement of Wk(x,y)

is needed in order for interpolant F to be of quadratic precision. That is



N

LWk(x,y) 1 (4.9)
k= I

The weight function to be used, as suggested by Franke and Little (reference 19, page 112)

is

W ~ ~ (RW - dk )+1] o
Wk(X'Y)= Rw J for

Rw- dk ifdk<Rw
(Rw -dk)+= 0 ifdk>-Rw  (4.10)

where Rw is a radius of influence about node (xk,Yk), and dk(X,y) is the distance between (x,y)

and (xk,yk) in Euclidean space. Since Qk is a bivariate quadratic function that satisfies eq. (4.2), it

is defined [12,13] by

Qk(X,y) = Zkl(x - xk) 2 + Zk2 (X - Xk) (Y - yk) + ck3 (y - yk) 2

+ Zk4(X - Xk) + Zk(y- yk) + fk (4.11)

with the coefficients satisfying the following expression in the weighted least-squares sense

[12,13].

N2

SWi~~y [ C(X~ - x) 2+ ... + c.- yC + fk _fE i(Xk'Yk) I k li i Xk)2 " k 5 ( y i y k + f Ydi] 2

2 - 3 for

F Rq - d, )+ 12
Wi(xY) L Rq d, (4.12)

where Rq is a radius of influence about node (xi,y i) and dk(Xi,Yi) is the distance between (xi,yi)

and (xk,Yk) in Euclidean space. It is obvious that Qk is a local approximation to f because non-zero

contributions to the least-squares fit only come from the nodes whose radii of influence include

(xk,Yk). Similarly, Wk, used in eq. (4.1), is locally defined. Thus, F is a local interpolant.



The only problem left is how to choose the radii of influence, both Rw and Rq. Franke and

Nielson [12] used fixed, vniform radii for their work. In contrast to that, Renka [13] chose Rw

and RqjUSt large enough to include the N, and Nq nodes, respectively, for fixed values of N" and

Nq. Here, Nw and Nq are the numbers of points used to calculate Rw and Rq, respectively. But

both methods were designed for scattered data, so a good way to search the nearest points in order

to implement the methods is needed; e.g., Renka [13] used the cell method.

4.2 Proposed simplified modification for a well-structured grid.

Since the adaptive-grid scheme used this study work is a finite-difference method, the

topology of the grid structure is regular, actually being uniform in logical space (see Fig. 1). Thus

it is natural to include the neighboring points from the grid structure (see Fig. 1) for the finite-

difference method. In order to make the implementation of Shepard's ideas easy, the fixed values

of ISPq and ISP w is used. Here, ISPq and ISP w are the grid numbers to be included along each

grid line when calculating the Rq and Rw, respectively. For example, ISPq = 3 in the 2-D case

corresponds to Nq = 8th Renka's work. Actually, numerical experiments show that the results are

best if the structure of the neighboring points used in the modified Shepard's method is the same as

that of the finite-difference scheme used. (The stencil of the finite-difference scheme used in this

study is a nine-point 'star'.) For example, the results of numerical experiments show that ISPq = 3

is best. (See Table I in Section 6).

The algorithm of the simplification of the modified Shepard's method proposed here is

summarized below.

1. Select ISPq in order to define

Wi= i (Rq - d) 1  used in (4.12)

The default value of ISPq is 3.
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2. For k = 1,...,N solve the weighted least-squares problem:

min Wi (xk'Yk)[Ckl(xi -xk) 2 +  + Ck5(Yi "Yk)+ fk fi
,j.... I....5 i..~1 kL

to yieldkj =..

3. Search for the nearest point (xk,yk) of point Q. Here, (xk,Yk) is the coordinate of point P

in the old grid, and (x,y) is the coordinate of point Q in the new grid (see Fig. 1). The

search algorithm used here is the point-search algorithm described in section 5.1.

4. Select ISPw in order to define

Wk =[ Rw used in (4.1)

The default value of ISPw is 3.

5. Define

Qk(X,y) = Zkl(X - Xk) 2 + Z -Xk) (Y - Yk + Ck3(Y - y) 2 + Ck4 (X - Xk) + O(y- yk + fk

and compute

N N

F(x,y) = I Wk(x'Y) Qk(x'Y) I Wk(x'Y)
k~l k=l

5. Mastin's Algorithm

5.1 Search algorithm.

As described in the previous section, an efficient point-search algorithm is required for the

proposed modification. Recently, Mastin [6] presented interpolation schemes for solution-adaptive

methods and related problems. He gave two search algorithms in his work, namely, the point-



search algorithm and the cell-search algorithm (to be described later) the former of which has been

adopted in this study.

Suppose an interpolated solution value is desired at point Q. One of Mastin's schemes uses

a point-search algorithm to find a grid point sufficiently close to Q, and then determines a cell C

which contains Q by using a cell-search algorithm. Following Mastin [6], the algorithms are given

as follows.

a. Point-search algorithm: to locate a grid point sufficiently close to Q.

Assume P is a starting point (see Fig. 2). First, both the distance from P to Q and the dis-

tance from Q to R, where R is a neighbor of P, are computed and compared with each other. P is

replaced by R whenever R is found to be closer to Q than P is. Then, the procedure is repeated

until P is closer to Q than any of its four (2-D) or six (3-D) neighbors are.

b. Cell-search algorithm: to determine a grid cell which contains Q.

Starting from a cell C (see Fig. 3), the first step is to decide on which side of L that Q lies.

This is determined simply by computing a signed area A (will be defined later). For example,

based on the signed area A calculation, Q is determined to be on the opposite side of the cell C (see

Fig. 3). Then, the cell C is replaced b ie cell D in the search. If there is no sign change in A,

then the algorithm is repeated. Once the sign of A changes, the match direction is switched to an

adjacent side; e.g., from line L1 to L2 as illustrated in Fig. 4. The algorithm is continued until a

cell is found which contains Q.

The signed area A depends on the orientation of the points (see Fig. 5) which is defined by:

A = x1(Y2 - y3) + x2(y3 - y) + x3(Y1 - y2) (5.1)

For 3-D grids (see Fig. 6), eq. (5.1) is replaced by
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A =;. • 2 x; 3  (5.2)

It is easy to see from eq. (5.2) that the 3-D search algorithm will fail to locate the cell which con-

tains the point Q if the cell faces are not planar, as in a general 3-D curvilinear grid and this hap-

pens to be a common case for the solution-adaptive method.

5.2 Interpolation scheme.

To verify the modification proposed here, another interpolation method against which to

compare is needed. After determining the cell C which contains Q, Mastin computed the value at Q

using bilinear (2-D) or trilinear (3-D) interpolation since the solution values at the vertices of C are

known. But bilinear (or trilinear) interpolation is no more than the area-weighting method [7] and,

in general, cannot be applied to arbitrary cells. Seldner and Westermann [7] give a generalization

of bilinear interpolation to arbitrary, convex, four-point cells. This explicit formula (see Appendix)

is used in this study to compare to the proposed simplification of the modified Shepard's method

for the 2-D case. Since there is no corresponding generalization for the 3-D case as yet, no

comparison is made for the 3-D case.

6. Numerical Results

It has been recognized that the numerical simulation of incompressible Navier-Stokes

equations becomes increasingly more difficult as the Reynolds number (Re) increases. The major

difficulty arises due to the large gradients associated with high Re flows. In order to resolve these

gradients one a very fine uniform grid is often used, thereby increasing the computational time.

Otherwise problems, of numerical instability [20] or inconsistency (i.e. the solution converges but

converges to the wrong solution) [21] would be encountered. An alternative to this approach is to

automatically place more grid points in regions with large gradients and less grid points where the

solution is smooth. This is exactly what the solution-adaptive method does.
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Driven cavity flow has become a standard test case for incompressible Navier-Stokes equa-

tions in the past two decades. For example, Ghia et al. [221 used a multi-grid coupled with a

strongly implicit procedure (SIP) to solve 2-D driven cavity flow up to Re = 10,000 on a 257 x

257 grid. Schreiber and Keller [23] also solved the same problem up to Re = 10,000 on a 180 x

180 grid using Newton iteration coupled with continuation method. Both used uniform grid.

Here, the solution-adaptive method with Shepard's interpolation is used to obtain a solution

yielding comparable results while using fewer grid points.

In this section, the problem formulation and solution algorithm for the 2-D case are

described briefly. Results obtained from 2-D driven cavity flow with Re = 5,000 on a 81 x 81

grid are shown. Finally, some results for 3-D driven-cavity flow are given to demonstrate the ease

with which Shepard's interpolation can be applied to 3-D flows.

6.1 Problem fornudation and solution algorithm.

The Navier-Stokes equations in terms of curvilinear coordinates for 2-D flow in a square

cavity (see Fig. 7) can be written as:

cot + y(u-xt) _ xn(v-yt) -y (u-xt) + x(v-yt)

2 + jo4, + +J (01.1

Re j 2  (6.1)

Ii+) (6.2)

where u = Ny, v = -Wx, and co = vx - uy. Here, (x, y) and (4,rj) are coordinates of the physical

and logical spaces, respectively. J is the Jacobian of the transformation from physical space to

logical space. xt and yt are the grid speed terms. x,, y,, x,, y., o, 3, y, a and 't are metric terms.

The boundary conditions are given by

u = v = 0 , when x=Oor 1,
u = v = 0 , when y = 0, (6.3)
u=1,v=0 , wheny=1.
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Eqs. (6.1) and (6.2) were discretized by applying a three-point central difference to spatial

derivatives in (o and V and a first-order backward difference to time derivatives in o. In order to

ensure second-order accuracy of the converged solutions, Briley's formula [241 was used for

vorticity boundary conditions at the wall. The resulting nonlinear system of algebraic equations

was solved by the modified strongly implicit procedure (MSI) which originated from Stone [25]

and was subsequently extended to a nine-point finite difference scheme by Schneider and Zedan

[26]. Since steady-state solutions are of principal interest, adaptation has to be done only

occasionally during the solution procedure. Here the solution-adaptive method coupled with a

continuation method is used.

The solution algorithm [271 is outlined as follows:

1. Specify the initial value of Re.

2. Solve eqs. (6.1-3) on a grid system using one-by-one iteration, i.e., one iteration

for the stream-function equation followed by another iteration for vorticity equation.

3. Calculate the weight functions (will be given later) based on the convergent (or rea-

sonable intermediate) solutions of step 2.

4. Generate a new grid by solving the corresponding 2-D version of the grid equations

(2.6) and (2.12).

5. Map values of (o, V, u, and v from the old grid to the new grid.

6. Increase the value of Re.

7. Repeat steps 2 through 6 until the solution converges for the desired Re number.

Note that the initial grid used can be either a uniform grid or a nonuniform grid based on previous

knowledge flow.

6.2 Results of 2-D driven cavity flow with Re = 5,000.

Since the principal interest here is the steady-state solution, the grid speed terms in eq.

(6.1) are set to zero for the obvious reason already mentioned in the Introduction. The solution

procedure starts from Re = 400 on a 81 x 81 uniform grid then Re = is increased to 1000, 2000,

3200, and 5000. Solution data for the intennediate soit,,ions during the Lp:i c (,,,.- et
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al. [221). The convergence criteria for both the Navier-Stokes solver and the grid-generation

solver is defined as

TOL =max I @f) I  - ( <s) <E

'd I((P, j1 ax (6.4)

where k is the iteration number. qs represents (o and V for the Navier-Stokes solver and x and y

for the grid-generation solver. Here e is set to 10-5 for grid-generation solver, and 10- for the

intermediate solutions of the Navier-Stokes solver. The value of E for the final converged

solutions 105 .

Numerical experiments show that changes of the solutions in the central-core region tend to

be slow if At is applied uniformly over the whole domain. The remedy is to apply a false-transient

method to the vorticity equation (i.e., vary At based on the calculation of the local velocity [28]

over the whole domain). As the step size of the grid becomes smaller and smaller, the advantage

of the false-transient method diminishes rapidly. (A similar observation was obtained by Benjamin

and Denny [29] where the local At calculation was based on a Neumann stability analysis.) No

improvement is found for convergence after the adaption based on solutions of Re = 3200, so that

At = 2 x 10-3 is applied uniformly to the whole domain in the rest of the calculation. Because one

by one iteration is used in this study, the boundary values of vorticity at the walls have to be

damped as follows:

(CO)k+ 1 = #,)B)k+1 + (I-X))(CO)k (6.5)

with X = 0.15 [29].

During the adaption the choice of the weight functions is the key to the success of solution-

adaptive methods which is also a problem dependent. In order to follow the flow the weight func-

tions used in this study involved velocity gradient along each coordinate line, that is,



x + 4(6.6)

W2 I+C2x 2+y
S(1+ ' v /(6.7)

where C1 and C2 are adaptive constants [27] used to adjust the density of the grid. Since large

gradients are known a priori to exist near the walls, in this study a stretching function is

incorporated into the weight functions. The stretching function [30] is

s _ I ln[(13+25-1)/(I3-2s+ )]2's)l 2 In[ (1P + 1I/(3 1 )](6.8)

where s can be either x or y.

Finally, the weight functions become

W = Ow1 + (1 -0)(1 + C3'y)1/2 (6.9)

W2 = OW2 +( -)( )1/2 (6.10)

Fig. 8 shows that a good choice for 0 and P3 are 0.5 and 1.054 respectively. The grid follows not

only the flow but also places more points near the walls and corners which is also important in

order to resolve the secondary vortex.

In order to ensure that the numerical accuracy of the interpolation method described in

section 4.2 is at least one -rder higher than generalized bilinear interpolation (see the Appendix), a

test was performed. The solutions based on the grid from the second adaption were used to

generate a new grid and then mapped onto this new grid. , ,.e there are no analytic solutions

available for comparison, the data on the new grid was then remapped onto the previous grid and



the results compared with the original data from this grid. The Euclidean norm was used to

calculate the error, that is,

[(original data - data obtained after two mappings) 2/(number of grid points)]1/2

The results of Table I confirm that the modified Shepard's interpolation is at least one order

of accuracy higher than the generalized bilinear interpolation. The errors in stream function are

small for both interpolation schemes. This due to the fact that the strem-function profile is smooth

and can be fit very well by either method.

The results for ISPq = ISPw = 3 are the best. The possible explanation is that the stencil of

the finite-difference method used in this study is a nine-point 'star' (results from cross-derivative

terms) which has the same structure as the proposed modified interpolation with ISPq = ISPw = 3.

Note that the error in u remains the same for the different values of ISPq and ISP, used. Here the

largest contribution to the errors is from the two uppoer corners and this dominates the calculation

of the Eucidean norm.
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Appendix Generalization of Bilinear Interpolation for Arbitrary Convex Four-point Cells [15].

Let G be a convex quadrangle (see Fig. A) with the comers (xi,yi), i = 1,...,4, and 12 be a

unit square, i.e., 12 = [ 0,1 ] x [ 0,1 ],

In order to assign values , i" E [0,1] to every point (x,y) e G, a function T is needed for

which



T: G (x,y) -* T~x,y) =(,i

For all linear functions

f:92 -4%2 with f(x,y)=ax+by+c (a,b,cE 9) (1)

the following property must hold:

f(x,y) = (1 -1) f(xlyl) + (1 - Ti) f(x2,y2 ) + 11 f(x3,y3)

+ (1 - ) 'I f(x4,y4 ) for all (x,y) E G (2)

With a, b, c E 91 arbitrary, eq. (2) assures exact approximation of every linear function. Here,

p + (p2 + q)1/2 for xs #

y for xS=1.

+ xs(y3 -1) 3

and

1 Ti (xs3- 1

with

2 + s(Y3 1)- - and q =ys(xs3-1)

where

Ys  A  l Y3) A 3 -YI

2 = Y Y Y4 - Yl

Note that the area-weighting method is included as a special case if Gs is already the unit

square, i.e., if xs = 1, and y3 = 1, then .=xs, Ti = yS is implied.
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Fig. 2 Move from P to R.
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Fig. 3 Move from C to D.
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Fig. 5 Relation between the position of Q and the sign of A.

Fig. 6 Move from C to D.
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Fig. 7 Driven cavity.
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University.
Department - Mechanical and Aerospace Engineering.
Duties - teach fluid mechanics and aerodynamics; research in boundary-layer

separation, stability and transition, and laminar flow control; student
advisement.

September 1982 - August 1985, Assistant Professor, Stanford University.
Department - Mechanical Engineering.
Duties - teach gas dynamics, undergraduate fluid mechanics, mathematics,

hydrodynamic stability; icsearch in boundary-layer separation, stability and
transition, and laminar flow control; student advisement.

January 1982 - August 1982, Assistant Professor, Virginia Polytechnic Institute & State
University.
Department - Engineering Science and Mechanics.
Duties - teach undergraduate fluid mechanics: research in boundary-layer transition

and laminar flow control, specifically the use of suction in controlling the
Tollmien-Schlichting instability; student advisement.
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June 1979 - December 1981, Aerospace Technologist (NASA/Langley Research Center) on
graduate leave without pay to study for Master's and Ph.D. degrees in Engineeing
Mechanics at Virginia Polytechnic Institute and State University. Position (June
1979-August 1981): Graduate Research Assistant; position (September 1981-
December 1981): Graduate Research Associate.

September 1978 - June 1979, Aerospace Technologist (NASA/Langley Research Center) on
graduate leave with pay to study for Master's degree in Engineering Mechanics at
Virginia Polytechnic Institute and State University.

June 1977 - September 1978, Aerospace Technologist, NASA/Langley Research Center.
Division - Aeronautical Systems Division.
Chief - A. Nagel
Principal Supervisor - Dr. Werner Pfenninger, Chief Scientist.
Duties - design of supercritical laminar flow control (LFC) airfoils; investigation of

induced drag associated with a modular system of aircraft; supervise co-op
students also assigned to these projects.

Summer 1976, Mathematics Aid, NASA/Langley Research Center.
Division - Subsonic Transonic Aerodynamics Division.
Branch - Dynamic Stability.
Principal Supervisor - Claude Patterson.
Duties - support experimental research investigating the effect of wing-tip vortices

of large aircraft on small following aircraft and the attenuation of such
vortices.

OTHER EXPERIENCE

July 1984 - August 1984, NASA/Langley Research Center, Hampton, VA
Office - Aircraft Energy Efficiency Office (ACEE)
Supervisor - Mr. D.V. Maddalon
Duties - Consult on and develop computer code to predict effects of disturbance-

wave interactions in support of variable-sweep, laminar-flow control flight
tests (JETSTAR).

July 1983 - August 1983, Summer University Faculty, Sandia National Laboratories,
Albuquerque, NM
Division - Applied Mathematics Division
Supervisor - Dr. M.R. Scott
Duties - Work on problems of boundary-layer stability and disturbance interactions.

D. CONSULTING

D.A Past

September 1981 - December 1981, International Consultants in Science and Technology,
Inc. Developed a computer code for Westinghouse Electric and Naval Underwater
Sea Center, optimizing suction strip configuration on axisymmetric bodies using
linear triple-deck theory; supervise two computer science students.
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D.2 Current

ICASE, NASA/Langley Research Center

Pratt and Whitney. Develop compressible, axisymmetric stability code for inlet design.

E. PROFESSIONAL ACTIVITIES

E.I Scientific and Professional Societies

Member, American Academy of Mechanics
Member, American Institute of Aeronautics and Astronautics (AIAA)
Member, American Physical Society (APS)
Member, American Society for Engineering Education (ASEE)
Associate Member, American Society of MecLanical Engineers (ASME)
Member, International Association for Computational Mechanics (IACM)
Member, Mathematical Association of America (MAA)
Member, Sigma Xi
Member, Society for Industrial and Applied Mathematics (SIAM)

E.2 Service to the Profession

National

1. Associate Editor, Annual Review of Fluid Mechanics, 1986-Present. With the work
divided equally among Milton Van Dyke, John Lumley and myself, we are responsible
for complete selection, refereeing, and editorial correction of all articles in each yearly
volume.

2. Technical Chairperson, AIAA 19th Fluid, Plasma Dynamics, and Lasers Conference,
Honolulu, June 1987.

3. Co-Chairperson, with Dan Jankowski, 44th Annual American PhYsical Society/Division
of Fluid Dynamics Meeting, Scottsdale, November 1991.

4. Originator of Annual Picture Gallery of Fluid Motions at annual meetings of the
American Physical Society, November, 1983, Houston. Responsibility for the gallen , at
American Physical Society meeting at Brown University, November 1984; Eugene,
November 1987; Buffalo, November 1988: Palo Alto, November 1989.

5. Member of U.S. National Transition Study Group under the direction of Eli Reshotko,
1984-Present.

6. Member of AIAA Technical Committee on Fluid Dynamics, 1984-1989. APS/AIAA
and ASME-AMD/AIAA Liaison. Prepared Aerospace Audit article for Fluid
Dynamics, Aerospace America, December 1988 (did not appear because of difficulties
between Technical Committee and editors).

7. Member of Fluid Mechanics Technical Committee of the Applied Mechanics Division
of the ASME, 1984-Present.

8. Member of Steering Committee for National Fluid Dynamics Congress, June 1988-
Present.
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9. University Representative of National Science Foundation Workshop on Engineering
Fluid Mechanics-Future Directions in Fluid Mechanics. Group Leader and
Coordinator of final document for Unsteady Flow Panel, Savannah, September 17-20,
1986.

10. Chairperson of ASME Junior Awards Committee 1989-Present. Vice-Chairperson
1987-1988.

11. Member of Scientific Committee of 1992-3 IUTAM Symposium on Nonlinear Stability
of Nonparallel Flows, January 1990-Present.

12. Organizer of Transition Simulation Olympics to be held at National Fluid Dynamics
Congress, Summer 1992.

13. Co-Organizer with Dr. Daniel Reda (Sandia National Laboratories) of Symposium on
Experimental and Theoretical/Numerical Studies of Boundary-Layer Stability and
Transition, to be held at the First Joint ASME/JSME Fluids Engineering Conference,
Portland, June 23-26, 1991.

14. Organizer of sessions on Numerical Methods in Transition Simulatio2 for 1st U.S.
National Congress on Computational Mechanics, Chicago, July 21-24, 1991.

15. Judge for AIAA Student Paper Competition, Reno, January 1987.

16. Chaired workshop on "Transition Prediction Models, Code Development, and
Verification" at NASA/Lewis Symposium on Transition in Turbines, Cleveland, May 15-
16, 1984.

17. Chaired Fluid Mechanics session at 21st Annual Meeting of the Society of Engineering
Science, Inc., Virginia Polytechnic Institute and State University, October 15-17, 1984.

18. Chaired session at the Fall 1985 Meeting of the Society for Industrial and Applied
Mathematics, Arizona State University, October 1985.

19. Puzzlemaker on "Three-Dimensional Basic States" for International Workshop on
Stability and Transition in Bounded Shear Flows, Tucson, November 22-23, 1985.

20. Chaired Fluid Dynamics session at AIAA 1986 Aerospace Sciences Meeting, Reno,
January 6-9, 1986.

21. Chaired Fluid Dynamics session at AIAA/ASME Joint Fluid Mechanics/Plasma
Dynamics and Lasers Conference, Atlanta, May 12-14, 1986.

22. Chaired Boundary Layer Stability session at 39th Annual Meeting of the American
Physical Society/Division of Fluid Dynamics, Columbus, November 23-25, 1986.

23. Moderated National Science Foundation Workshop on Engineering Fluid Mechanics-
Future Directions in Fluid Mechanics, Winter Annual Meeting of ASME, Anaheim,
December 7-12, 1986.

24. Chaired Fluid Dynamics session at AIAA 19th Fluid Dynamics, Plasma Dynamics, and
Lasers Conference, Honolulu, June 8-10, 1987.
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25. Organized Stability and Transition session for National Fluid Dynamics Conference,
Cincinnati, June 1988.

26. Chaired Fluid Dynamics session at AIAA 1989 Aerospace Sciences Meeting, Reno,
January 1989.

27. Chaired Computational Fluid Dynamics session at 3rd IUTAM Symposium on Laminar-
Turbulent Transition, Toulouse, September 1989.

28. Chaired Boundary Layer Receptivity session at 42th Annual Meeting of the American
Physical Society/Division of Fluid Dynamics, Palo Alto, November 1989.

29. Chaired Boundary-Layer Stability session at 3rd International Congress of Fluid
Mechanics, Cairo, January 1990.

30. Chaired Theoretical Fluid Mechanics session at Eleventh U.S. National Congress of
Applied Mechanics, Tucson, May 1990.

31. Chaired Stability and Transition session at AIAA 21st Fluid Dynamics, Plasmadynamics
and Lasers Conference, Seattle, June 18-20, 1990.

32. Referee journal articles for Physics of Fluids, Journal of Fluid Mechanics, Journal of
Fluids Engineering, AIAA Journal, and Fluid Dynamics Research (The Japan Society of
Fluid Mechanics) and proposals for the National Science Foundation.

Local

1. Chairperson, 2nd Arizona Fluid Mechanics Conference, Arizona State University, April
4-5, 1986.

2. Chaired session at 3rd Arizona Fluid Mechanics Conference, University of Arizona,
February 20-21, 1987.

3. Chaired session at 5th Arizona Fluid Mechanics Conference, University of Arizona,
February 17-18, 1989.

E.3 Honors and Recognitions

Phi Kappa Phi
Phi Beta Kappa
Merit Scholarship from the State of Maryland, 1974
Recipient of a NASA fellowship, 1976
Outstanding Summer Employee Award from NASA/Langley Research Center, 1976
Torrey Award for Excellence in Mathematics, Goucher College, 1977
Outstanding Achievement Award from NASA/Langley Research Center, 1978
Listed in Who's Who in American Colleges and Universities
Cunningham Fellowship Award from Virginia Polytechnic Institute & State University,

1981
Presidential Young Investigator Award, National Science Foundation, 1984
Winner 4th Annual Picture Gallery of Fluid Motions at the 39th Annual Meeting of the

American Physical Society/Division of Fluid Dynamics, Columbus, November 1986.
American Academy of Mechanics, 1988
AIAA Excellence in Teaching Award, Arizona State University, Fall 1988
Professor of the Year, Pi Tau Sigma, Arizona State University, 1988-1989



Ielen Louise Reed page 2 74

E.4 Current Fields of Interest

Separated and Transitional Flows, Unsteady Flows, Hypersonics, Supersonics,
Hydrodynamic Stability, Laminar Flow Control, Three-Dimensional Boundary Layers,
Aerodynamics, Computational Fluid Mechanics, Perturbation Methods.

F. TEACHING

F.1 Arizona State University

Awards

AIAA Excellence in Teaching Award, Arizona State University, Fall 1988
Professor of the Year, Pi Tau Sigma, Arizona State University, 1988-1989

Post Doctoral Associates Supervised

H. Haj-Hariri, "Spatial Simulation of Transition," completed Spring 1988.

P. Balakumar, "Stability of Three-Dimensional Supersonic Boundary Layers," completed
Spring 1989.

E. Tuliszka-Sznitko, "High-Frequency Breakdown of Three-Dimensional Boundary
Layers," completed Spring 1990.

Ph.D. Students Supervised

C.Y. Shen, "Numerical Simulation of Three-Dimensional Unsteady Separation at Low
Reynolds Numbers," expected Summer 1990.

G. Stuckert, "Stability of Hypersonic Boundary-Layer Flows," expected Summer 1990.

R.S. Lin, "The Crossflow Instability in Swept-Wing Flows," expected Spring 1991.

T. Buter, "Receptivity of Boundary-Layer Flows to Freestream Vorticity," expected Spring
1992.

N. Lin, "Receptivity of Boundary-Layer Flows to Freestream Acoustic Disturbances,"
expected Spring 1992.

C. Lu, "The Effect of Initial Conditions and Active Control on Transition in a Flat-Plate
Boundary Layer," expected Spring 1992.

MS Students Supervised

G. Stuckert, "Hypersonic Viscous Flow over Two-Dimensional and Axisymmetric Bodies,"
completed Spring 1987.

N. Lin, "Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with an Elliptic
Leading Edge," completed Fall 1989.

R. Holz, "The No Tail Rotor," McDonnell-Douglas Fellow, expected Summer 1990.
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B. Toppel, "Numerical Simulation of Two-Dimensional Unsteady Separation at Low
Reynolds Numbers," expected Summer 1990.

T. Haynes, "Stability of Three-Dimensional Supersonic Boundary Layers," expected Spring
1991.

T. Trekas, "Attachment-Line Instabilities in High-Speed Flows," Garrett Fellow, expected

Spring 1991.

Senior Projects Supervised

T. Haynes, "Stability of Boundary-Layer Flows," completed Fall 1988.

P. Flynn, "AERO DESIGN '89: SAE International Remotely Controlled Cargo Aircraft
Competition," completed Spring 1989, Prize-winner at the competition in Missouri.

G. Loring, "Secondary Instabilities in Three-Dimensional Boundary Layers," completed

Summer 1989.

T. Taylor, "Stability of High-Speed Flows," completed Summer 1989.

H. Phouybanhdyt, "Formula SAE Competition: Development of a Small Formula-Style
Racing Car," completed Spring 1990.

T. Wolcott, "Formula SAE Competition: Development of a Small Formula-Style Racing

Car," completed Spring 1990.

Ph.D. Reading Committees

G. Abdy, I. DeSilva, M. Mousseux

MS Reading Committees

J. Hoos, S. Kersey, T. Kincheloe, M. Mousseux, P. Pupator, T. Vincent, D. Wang

Staff Supervised

Ms. Jane Hawthorne, Administrative Assistant I, Jun 86-Sept 87
Dr. P. Balakumar, Visiting Faculty Associate, Jan 87-Jun 89
Dr. H. Haj-Hariri, Visiting Faculty Associate, Feb 87-Jun 88
Ms. Sue Johnson, Office Assistant, Feb 87-Apr 88
Mr. David Alvarez, Computer Assistant, Sept 87-Jan 88
Ms. Myrna Pena, Administrative Assistant II, Nov 87-Feb 90
Ms. Tracy Jensen, Office Assistant, Apr 88-Pres
Dr. E. Tuliszka-Sznitko, Visiting Faculty Associate, Jan 90-Apr 90
Ms. Christine Petiford, Administrative Assistant II, Apr 90-Pres
Ms. Media Petraglia, Office Assistant, Apr 90-Pres
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Committees (Arizona State University)

University:

Faculty Women's Association Executive Board (1989-1990)

College of Engineering and Applied Sciences:

Affirmative Action (1985-1990)
1988-89 Active member of 7 Search Committees for Computer Science

and 2 Search Committees for Industrial Engineering
1989-90 Active member of 1 Search Committee for Agribusiness

Mechanical and Aerospace Enginee.ing:

Ph.D. Qualifying Examination in Mathematics (1985-1986)
Aerospace Curriculum Committee (1985-1987)
Undergraduate Affairs Committee (1985-1987)
Ph.D. Qualifying Examination in Fluid Mechanics (1986-1987, 1988-1989)
Department-Chair Search Committee (1987-1988)
Seminar Committee (1988-1989)
Development Committee Chair (1988-1990)
Heat-Transfer Search Committee (1988-1989)
Faculty Lounge Committee (1988-1989)
Aerospace Center of Excellence Committee (1988-1989)

Service

Recruited Dr. Valana Wells, Assistant Professor in Aerospace Engineering
Developed junior-level course, Aerodynamics I
Coordinated 3 junior/senior-level courses, Aerodynamics I, Gasdynamics, Aerodynamics II

for Aerospace Accreditation (1988)

F.2 Stanford University

Ph.D. Students Supervised

B. Singer, "Numerical Simulation of Transition to Turbulence in a Channel," completed
Spring 1987.

R. Henk, "Fundamental Studies of Three-Dimensional Unsteady Separation at Low
Reynolds Numbers," completed Spring 1990.

Ph.D. Reading Committees

B. Afshari, T. Cheung, R. Strawn, V. Wells
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Committees

University:

Academic Council
Freshman Advisor (1983-1985)

College of Engineering:

Undergraduate Council (1983-1985)
Women in Science and Engineering (WISE) Advisor (1984-85)

Mechanical Engineering:

Undergraduate Advising Committee (1982-1983)
Graduate Admissions Committee (1983-1985)

F.3 Virginia Polytechnic Institute and State University

Ph.D. CQmmittee: J.R. Dagenhart
Staff SuDervised: R. Eskelund, B. Wong (two computer science students)

G. SCHOLARLY AND CREATIVE CONTRIBUTIONS

G.1 Publications

Refereed

1. "Flow over Plates with Suction through Porous Strips," A.H. Nayfeh, H.L. Reed, and
S.A. Ragab, AIAA Journal, Volume 20, Number 5, Page 587, May 1982.

2. "Stability of Flow over Axisymmetric Bodies with Porous Suction Strips," A.H. Nayfeh
and H.L. Reed, Physics of Fluids, Volume 28, Number 10, Page 2990, October 1985.

3. "Numerical-Perturbation Technique for Stability of Flat-Plate Boundary Layers with
Suction," H.L. Reed and A.H. Nayfeh, AIAA Journal, Volume 24, Number 2, Page 208,
February 1986.

4. "Effect of Suction and Weak Mass Injection on Boundary-Layer Transition," W.S.
Saric and H.L. Reed, AJAA Journal, Volume 24, Number 3, Page 383, March 1986.

5. "Flow over Bodies with Suction through Porous Strips," A.H. Nayfeh, H.L. Reed, and
S.A. Ragab, Physics of Fluids, Volume 29, Number 7, Page 2042, July 1986.

6. "Wave Interactions in Swept-Wing Flows," H.L. Reed, Physics of Fluids, Volume 30,
Number 11, Page 3419, November 1987.

7. "Stability of Three-Dimensional Boundary Layers," H.L. Reed and W.S. Saric, Annual
Review of Fluid Mechanics, Volume 21, Page 235, January 1989.

8. "Numerical Simulations of Transition in Oscillatory Plane Channel Flow," B.A. Singer,
J.H. Ferziger, and H.L. Reed, Journal of Fluid Mechanics, Volume 208, Page 45, 1989.
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9. "The Effects of Streamwise Vortices on Transition in the Plane Channel," B.A. Singer,
H.L. Reed and J.H. Ferziger, Physics of Fluids A, Volume 1, Number 12, Page 1960,
December 1989.

10. "Compressible Boundary-Layer Stability Theory," H.L. Reed and P. Balakumar, in
press Physics of Fluids A, July 1990.

11. "An Application of Geometric Deformations Using Triparametric Volumes to
Approximate Fluid Flow," S. Kersey, M. Henderson, H.L. Reed, and R. Barnhill,
accepted Computers and Fluids.

12. "Stability of Three-Dimensional Supersonic Boundary Layers," P. Balakumar and H.L.
Reed, accepted Physics of Fluids A.

Books Edited

1. Annual Review of Fluid Mechanics (edited by M. VanDyke, J. Lumley, and H. Reed),
Volume 19, 1987.

2. Annual Review of Fluid Mechanics (edited by M. VanDyke, J. Lumley, and H. Reed),
Volume 20, 1988.

3. Annual Review of Fluid Mechanics (edited by M. VanDyke, J. Lumley, and H. Reed),
Volume 21, 1989.

4. Annual Review of Fluid Mechanics (edited by M. VanDyke, J. Lumley, and H. Reed),
Volume 22, 1990.

Reviewed Papers

Invited

1. "Stability and Transition of Three-Dimensional Flows," H.L. Reed and W.S. Saric,
Invited Paper, in Proceedings of the Tenth U.S. National Congress of Applied
Mechanics, ASME, New York, 1987.

2. "Stability of Three-Dimensional Boundary Layers," H.L. Reed, Invited Paper, SAE
871857, AEROTECH '87 (Aerospace Technology Conference and Exposition), Long
Beach, October 5-8, 1987.

3. "Stability and Transition of Three-Dimensional Boundary Layers," W.S. Saric and H.L.
Reed, Invited Paper, AGARD Conference Number 438, Fluid Dynamics of Three-
Dimensional Turbulent Shear Flows and Transition, Cesme, Turkey, October 1988.

4. "Supersonic/Hypersonic Laminar/Turbulent Transition," H.L. Reed, G.K. Stuckert, and
P. Balakumar, Invited Paper, in Developments in Mechanics, Volume 15, Proceedings
of the 21st Midwestern Mechanics Conference, August 13-16, 1989.

5. "Boundary-Layer Receptivity: Navier-Stokes Computations," H.L. Reed, N. Lin, and
W.S. Saric, Invited Paper, in Proceedings of the Eleventh U.S. National Congress of
Applied Mechanics, ASME, New York, 1990.
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6. "Navier-Stokes Simulations of Boundary-Layer Receptivity," H.L. Reed, Keynote
Speaker, 22nd Turbulence Symposium, National Aerospace Laboratory, Tokyo, July 25-
27, 1990.

Other

1. "Design Considerations of Advanced Supercritical Low Drag Suction Aifoils," V
Pfenninger, H.L. Reed, and J.R. Dagenhart, Viscous Flow Drag Reduction, AIAA
Progress in Astronautics and Aeronautics Series, Volume 72, 1980.

2. "Flow over Plates with Suction through Porous Strips," A.H. Nayfeh, H.L. Reed, and
S.A. Ragab, AIAA Paper 80-1416.

3. "Stability of Flow over Plates with Porous Suction Strips," H.L. Reed and A.H. Nayfeh,
AIAA Paper 81-1280.

4. "Stability of Compressible Three-Dimensional Boundary Layer Flows," H.L. Reed and
A.H. Nayfeh, AIAA Paper 82-1009.

5. "Stability of Flow over Axisymmetric Bodies with Porous Suction Strips," A.H. Nayfeh
and H.L. Reed, AIAA Paper 82-1025.

6. "Effect of Suction and Weak Mass Injection on Boundary-Layer Transition," W.S.

Saric and H.L. Reed, AIAA Paper 83-0043.

7. "Wave Interactions in Swept-Wing Flows," H.L. Reed, AIAA Paper 84-1678.

8. "An Analysis of Wave Interactions in Swept-Wing Flows," H.L. Reed, 2nd JUTAM
Symposium on Laminar-Turbulent Transition, ed. V.V. Kozlov and V. Ya Levchenko.
Springer-Verlag, New York, 1985.

9. "Disturbance-Wave Interactions in Flows with Crossflow," H.L. Reed, AIAA Paper 85-
0494.

10. "Investigation of the Effects of Initial Disturbances on Plane-Channel Transition," B.A.
Singer, H.L. Reed, and J.H. Ferziger, AIAA Paper 86-0433.

11. "An Analysis of Unsteady, Two-Dimensional Separation Bubbles," H.L. Reed and L.K.
Pauley, in Proceedings of the Royal Aeronautical Societ' Conference on Aerodynamics
at Low Reynolds Numbers, London, October 15-18, 1986.

12. "Effect of Streamwise Vortices on Transition in Plane Channel Flow," B.A. Singer,
H.L. Reed and J.H. Ferziger, AIAA Paper 87-0048.

13. "Numerical Simulation of Transition in a Decelerating Boundary Layer," K.S. Yang,
P.R. Spalart, H.L. Reed, and J.H. Ferziger, IUTAM Symposium on Turbulence
Management and Relaminarization, ed. R. Narasimha and H. Liepmann, Springer-
Verlag, New York, 1987.

14. "Three-Dimensional Stability of Boundary Layers," W.S. Saric and H.L. Reed, in
Perspectives in Turbulence Studies, ed. H.U. Meier and P. Bradshaw, Springer-Verlag,
New York, 1987.
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15. "Local Intermodal Energy Transfer of Secondary Instabilities in the Plane Channel,"
B.A. Singer, P.R. Spalart, J.H. Ferziger, and H.L. Reed, AIAA Paper 87-1202.

16. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, ASME Forum on
Unsteady Separation, Cincinnati, June 1987.

17. "Experiments on an Un.tcady, Three-Dimensional Sepa-ation," R.W. Henk, W.C.
Reynolds, and H.L. Reed, in Proceedings of the Second AFOSR Workshop on Unsteady
Separated Flows, USAF, Colorado, July 28-29, 1987.

18. "Numerical Simulations of Transition with an Oscillating Mean Flow," B.A. Singer,
J.H. Ferziger, and H.L. Reed, AIAA Paper 88-0406.

19. "A Method to Determine the Performance of Low-Reynolds-Number Airfoils Under
Off-Design Unsteady Freestream Conditions," H.L. Reed and B.A. Toppel, Low
Reynolds Number Aerodynamics Conference, Notre Dame, June 5-7, 1989; in Lecture
Notes in Engineering, Springer-Verlag, New York, 1989.

20. "Stability of High-Speed Chemically Reacting and Three-Dimensional Boundary
Layers," H.L. Reed, G.K. Stuckert, and P. Balakumar, 3rd IUTAM Symposium on
Laminar-Turbulent Transition, Toulouse, ed. R. Michel and D. Arnal, Springer-Verlag,
New York, to be published, 1990.

21. "Boundary Layer Receptivity: Computations," N. Lin, H.L. Reed, and W.S. Saric,
Third International Congress of Fluid Mechanics, Cairo, January 1990.

22. "Experiments on an Unsteady, Three-Dimensional Separation," R.W. Henk, W.C.
Reynolds, and H.L. Reed, Workshop on the Physics of Forced Unsteady Separation,
NASA/Ames Research Center, April 1990.

23. "Stability Limits of Supersonic Three-Dimensional Boundary Layers," H.L. Reed, T.
Haynes, and P. Balakumar, AIAA Paper 90-1528.

24. "Stability of Chemically Reacting, Hypersonic, Viscous Flows," G.K. Stuckert and H.L.
Reed, AIAA Paper 90-1529.

25. "Multiple-Jet Circulation Control Airfoils with Large Coanda Surfaces," R.G. Holz,
A.A. Hassan, and H.L. Reed, submitted to 1991 AIAA Aerospace Sciences Meeting,
Reno, January 1991.

Other

1. "Design Considerations of Transonic LFC Airfoils with Practically Full Chord Laminar
Flow," W. Pfenninger and H.L. Reed, in Langley Research Center Basic Research
Review, April 1978.

2. "The Stability of Boundary Layers with Porous Suction Strips: Experiment and
Theory," G.A. Reynolds, W.S. Saric, H.L. Reed, and A.H. Nayfeh, in Proceedings
ACEE Project Oral Status Review, Dryden Flight Research Center, September 1981.

3. "Report of Computational Group," H.L. Reed, in Transition in Turbines, NASA CP
2386, NASA/Lewis Research Center, May 1984.
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4. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids, Volume 28, Number 9, Page
2631, September 1985.

5. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids, Volume 29, Number 9, Page
2769, September 1986.

6. "Fluids Engineering Workshop Unsteady-Flow Subgroup Final Report," H.L. Reed et
al. (Prepared and edited: H.L. Reed), National Science Fouadation Workho on
Engineering Fluid Mechanics-Future Directions in Fluid Mechanics, Savannah
(September 1986), December 1986.

7. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids, Volume 30, Number 9, Page
2597, September 1987.

8. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids, Volume 31, Number 9, Page
2383, September 1988.

9. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids A, Volume 1, Number 9, Page
1439, September 1989.

10. "Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with an Elliptic
Leading Edge," N. Lin, H.L. Reed, and W.S. Saric, Arizona State University, ASU CR-
R 90006, September 1989.

11. "Gallery of Fluid Motions," H.L. Reed, Physics of Fluids A, Volume 2, Number 9,
September 1990.

Publications Submitted

1. "A Shear-Adaptive Solution of the Spatial Stability of Flat-Plate Boundary Layers with
Natural Outflow Conditions," H. Haj-Hariri and H.L. Reed, in preparation.

2. "Shepard's Interpolation for Solution-Adaptive Methods," C.-Y. Shen and H.L. Reed, in
preparation.

3. "Spatial Simulation of Boundary-Layer Transition," H.L. Reed, Invited paper, in
preparation for Applied Mechanics Review.

G.2 Presentations by H. Reed

Conference Presentations

1. "Stability of Flow over Plates with Porous Suction Strips," H.L. Reed and A.H. Nayfeh,
AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, AIAA Paper 81-1280,
June 23-25, 1981.

2. "Stability of Compressible Three-Dimensional Boundary-Layer Flows," H.L. Reed and
A.H. Nayfeh, AIAA/ASME Conference, St. Louis, AIAA Paper 82-1009, June 7-11,
1982.

3. "Stability of Flow over Axisymmetric Bodies with Porous Suction Strips," A.H. Nayfeh
and H.L. Reed, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat
Transfer Conference, St. Louis, AIAA Paper 82-1025, June 7-11, 1982.



lelen Louise Reed page 282

4. "Experiments on the Stability of the Flat-Plate Boundary Layer with Suction," G.A.
Reynolds and W.S. Saric, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and
Heat Transfer Conference, St. Louis, Missouri, AIAA Paper 82-1026, June 7-11, 1982.

5. "Boundary Layer Stability - Recent Developments," H.L. Reed, Seminar in Fluid
Mechanics, Stanford, November 2, 1982.

6. "Nonparallel Stab*lit, of Compressih1e Three-Din'io-nal Boundary-Layer Flows,"
H.L. Reed and A.H. Nayfeh, 35th Meeting of the American Physical Society, Division
of Fluid Dynamics, Rutgers, Bulletin American Physical Society, Volume 27, Number
9, Page 1188, November 21-23, 1982.

7. "Plans for Transition Research," H.L. Reed, 1983 Meeting of the Stanford
Thermosciences Affiliates, Stanford, January 24, 1983.

8. "Wave Interactions in Swept-Wing Flows," H.L. Reed, NASA/Langley Research
Center, June 13, 1984.

9. "Wave Interactions in Swept-Wing Flows," H.L. Reed, AIAA 17th Fluid Dynamics,
Plasma Dynamics and Lasers Conference, Snowmass, AIAA Paper 84-1678, June 25-
27, 1984.

10. "Wave Interactions in Swept-Wing Flows," H.L. Reed, 2nd IUTAM Symposium on
Laminar-Turbulent Transition, Novosibirsk, USSR, July 9-13, 1984.

11. "Crossflow/Tollmien-Schlichting Interactions in Swept-Wing Flows," H.L. Reed, 37th
Meeting of the American Physical Society, Division of Fluid Dynamics, Providence,
Bulletin American Physical Society, Volume 29, Number 9, Page 1554, November 18-
20, 1984.

12. "Disturbance-Wave Interactions in Flows with Crossflow," H.L. Reed, AIAA 23rd
Aerospace Sciences Meeting, Reno, AIAA Paper 85-0494, January 14-17, 1985.

13. "Disputed Results in Compressible Boundary-Layer Stability Theory," H.L. Reed, 38th
Meeting of the American Physical Society, Division of Fluid Dynamics, Tucson,
Bulletin American Physical Society, Volume 30, Number 10, Page 1709, November 24-
26, 1985.

14. "Effect of Streamwise Vorticity on Plane-Channel Transition," B.A. Singer, H.L. Reed,
and J.H. Ferziger, 2nd Annual Arizona Fluid Mechanics Meeting, Arizona State
University, April 4-5, 1986.

15. "An Analysis of Unsteady, Two-Dimensional Separation Bubbles," H.L. Reed and L.K.
Pauley, Royal Aeronautical Society Conference on Aerodynamics at Low Reynolds
Numbers, London, October 15-18, 1986.

16. "The Future of Unsteady-Flow Research," H.L. Reed et al., National Science
Foundation Workshop on Engineering Fluid Mechanics-Future Directions in Fluid
Mechanics, Vinter Annual Meeting of ASME, Anaheim, December 7-12, 1986.

17. "Numerical Simulation of Transition in a Decelerating Boundary Layer", K.S. Yang,
P.R. Spalart, H.L. Reed, and J.H. Ferziger, IlUTAM Symposium on Turbulence
Management and Relaminarization, Bangalore, India, January 19-23, 1987.
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18. "Effect of Streamwise Vorticity on Plane-Channel Transition," B.A. Singer, H.L. Reed,
and J.H. Ferziger, 3rd Arizona Fluid Mechanics Conference, University of Arizona,
February 20-21, 1987.

19. "Numerical Simulation of Transition in a Decelerating Boundary Layer", K.S. Yang,
P.R. Spalart, H.L. Reed, and J.H. Ferziger, 3rd Arizona Fluid Mechanics Conference,
University of Arizona, February 20-21, 1987.

20. "Unsteady Separation at Low Reynolds Numbers," H.L. Reed, ASME Forum on
Unsteady Separation, Cincinnati, June 1987.

21. "A Method to Determine the Performance of Low-Reynolds-Number Airfoils Under
Off-Design Unsteady Freestream Conditions," H.L. Reed and B.A. Toppel, Low
Reynolds Number Aerodynamics Conference, Notre Dame, June 5-7, 1989; in Lecture
Notes in Engineering, Springer-Verlag, New York, 1989.

22. "Stability of High-Speed Chemically Reacting and Three-Dimensional Boundary
Layers," H.L. Reed, G.K. Stuckert, and P. Balakumar, 3rd IUTAM Symposium on
Laminar-Turbulent Transition, Toulouse, ed. R. Michel and D. Arnal, Springer-Verlag,
New York, to be published, 1990.

23. "Stability of High-Speed Chemically Reacting and Three-Dimensional Boundary
Layers," H.L. Reed, ICASE, NASA/Langley Research Center, October 31, 1989.

24. "Receptivity of the Boundary Layer on a Semi-Infinite Flat Plate with an Elliptic
Leading Edge," H.L. Reed, ICASE, NASA/Langley Research Center, October 31, 1989.

25. "Boundary Layer Receptivity: Computations," N. Lin, H.L. Reed, and W.S. Saric,
Third International Congress of Fluid Mechanics, Cairo, January 1990.

26. "Stability Limits of Supersonic Three-Dimensional Boundary Layers," H.L. Reed, T.
Haynes, and P. Balakumar, AIAA 21st Fluid Dynamics, Plasmadynamics and Lasers
Conference, AIAA Paper 90-1528, Seattle, June 18-20, 1990.

Invited Seminars By H. Reed

1. "An Analysis of Instabilities in Laminar Viscous Flows," H.L. Reed, Invited Seminar in
Applied Mathematics, Sandia National Laboratories, Albuquerque, August 3, 1983.

2. "The Effect of Suction and Blowing on Boundary Layer Transition," W.S. Saric and
H.L. Reed, Invited, Applied Mechanics Seminar, University of Southern California,
February 8, 1984.

3. "The Effect of Suction and Blowing on Boundary Layer Transition," W.S. Saric and
H.L. Reed, Invited, Fluid Mechanics Seminar, California Institute of Technology,April
25, 1984.

4. "Wave Interactions in Swept-Wing Flows," H.L. Reed, Invited Paper, 21st Annual
Meeting of the Society of Engineering Science, Inc., Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, October 15-17, 1984.

5. "Disturbance-Wave Interactions in Flows with Crossflow," H.L. Reed, Invited, Fluid
Mechanics Seminar, University of California at Berkeley, February 28, 1985.
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6. "Stability and Transition of Three-Dimensional Flows," H.L. Reed and W.S. Saric,
Invited Talk, 10th U.S. National Congress of Applied Mechanics, Austin, Texas, June
16-20, 1986.

7. "Computational Simulation of Transition," H.L. Reed, Invited Talk, ICASE Meeting of
Stability Theory, NASA/Langley Research Center, November 21, 1986.

8. "Nonequilibrium-Chemistry Considerations in Hypersonic Boundary-Layer Stability,"
H.L. Reed, Invited Talk, ICASE Meeting of Stability and Transition of High Mach
Number Shear Layers, NASA/Langley Research Center, March 20, 1987.

9. "Stability and Transition of Three-Dimensional Flows," H.L. Reed and W.S. Saric,
Invited Seminar, Princeton University, April 21, 1987.

10. "Transition at Hypersonic Speeds," H.L. Reed, Invited Talk, General Dynamics, Fort
Worth, May 27, 1987.

11. "Transitional and Unsteady Flows," H.L. Reed, Invited Talk, General Electric, Ohio,
July 29, 1987.

12. "Stability of Three-Dimensional Boundary Layers," H.L. Reed, Invited Talk, SAE
871857, AEROTECH '87 (Aerospace Technology Conference and Exposition), SAE,
Long Beach, October 5-8, 1987.

13. "Three-Dimensional Boundary-Layer Stability," H.L. Reed, Invited Lecture, University
of Oregon, Eugene, November 6, 1987.

14. "Stability and Transition of Compressible Boundary Layers," H.L. Reed, Invited Talk,
McDonnell Aircraft Company, St. Louis, November 12, 1987.

15. "Three-Dimensional Boundary-Layer Stability," H.L. Reed, Invited Talk, Naval Post
Graduate School, Monterey, February 18, 1988.

16. "Computational Simulation of Three-Dimensional Boundary-Layer Flows," H.L. Reed,
Invited Lecture, Tohoku University, Sendai, Japan, April 1988.

17. "Computational Simulation of Three-Dimensional Boundary-Layer Flows," H.L. Reed,
Invited Lecture, Hokkaido University, Sapporo, Japan, April 1988.

18. "Stability and Transition of Compressible Boundary Layers," H.L. Reed, Invited Talk,
McDonnell Aircraft Company St. Louis, May 26, 1988.

19. "Energy-Efficient Aircraft," H.L. Reed, Invited Talk, Society of Women Engineers,
Notre Dame, Indiana, November 9, 1988.

20. "Three-Dimensional Boundary-Layer Stability," H.L. Reed, Invited Talk, IBM Lecture
Series, Notre Dame, Indiana, November 9, 1988.

21. "Three-Dimensional Boundary-Layer Stability," H.L. Reed, Invited Lecture, University
of Western Ontario, London, Canada, November 23, 1988.
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22. "Spatial Simulation of Three-Dimensional Boundary-Layer Transition" and
"Supersonic/Hypersonic Stability," H.L. Reed, Invited Presentation, NASA/Langley
Research Center, January 30, 1989.

23. "Three-Dimensional Boundary-Layer Stability," H.L. Reed, Invited Seminar, University
of Houston, March 2, 1989.

24. 'Supersonic/Hypersonic Stability and Transition," H.L. Reed, Invited Presentation,
General Dynamics, Fort Worth, March 17, 1989.

25. "Supersonic/Hypersonic Laminar/Turbulent Transition," H.L. Reed, G.K. Stuckert, and
P. Balakumar, Invited Paper, 21st Midwestern Mechanics Conference, Michigan
Technological University, August 13-16, 1989.

26. "Stability of High-Speed Chemically Reacting and Three-Dimensional Boundary
Layers," H.L. Reed, Invited Seminar, University of Virginia, October 26, 1989.

27. "Boundary-Layer Receptivity," H.L. Reed, Invited Seminar, Michigan Technological
University, February 9, 1990.

28. "Transition in High-Speed Flows," H.L. Reed, Invited Presentation, H.L. Reed, General
Dynamics, Fort Worth, April 9, 1990.

29. "BoL idary-Layer Receptivity: Navier-Stokes Computations," N. Lin, H.L. Reed, and
W.S. Saric, Invited Paper, in Proceedings of the Eleventh U.S. National Congress )f
Applied Mechanics, Tucson, ASME, New York, May 1990.

30. "Navier-Stokes Simulations of Boundary-Layer Receptivity," H.L. Reed, Keynote
Speaker, 22nd Turbulence Symposium, National Aerospace Laboratory, Tokyo, Juiy 25-
27, 1990.


